from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random import numpy as np from huggingface_hub import PyTorchModelHubMixin from tqdm import tqdm, trange from sentence_transformers import SentenceTransformer import torch import torch.nn as nn from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from transformers import BertForPreTraining, BertModel, AutoTokenizer, BertForSequenceClassification, RobertaForSequenceClassification from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info router = APIRouter() DESCRIPTION = "First Baseline" ROUTE = "/text" MODEL = "mlp" #mlp, ct, modern class ConspiracyClassification( nn.Module, PyTorchModelHubMixin, # optionally, you can add metadata which gets pushed to the model card ): def __init__(self, num_classes): super().__init__() self.h1 = nn.Linear(384, 100) self.h2 = nn.Linear(100, 100) self.h3 = nn.Linear(100, 100) self.h4 = nn.Linear(100, 50) self.h5 = nn.Linear(50, num_classes) self.dropout = nn.Dropout(0.2) self.activation = nn.ReLU() def forward(self, input_texts): outputs = self.h1(input_texts) outputs = self.activation(outputs) outputs = self.dropout(outputs) outputs = self.h2(outputs) outputs = self.activation(outputs) outputs = self.dropout(outputs) outputs = self.h3(outputs) outputs = self.activation(outputs) outputs = self.dropout(outputs) outputs = self.h4(outputs) outputs = self.activation(outputs) outputs = self.dropout(outputs) outputs = self.h5(outputs) return outputs class CovidTwitterBertClassifier( nn.Module, PyTorchModelHubMixin, # optionally, you can add metadata which gets pushed to the model card ): def __init__(self, num_classes): super().__init__() self.n_classes = num_classes self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2') self.bert.cls.seq_relationship = nn.Linear(1024, num_classes) self.sigmoid = nn.Sigmoid() def forward(self, input_ids, token_type_ids, input_mask): outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask) logits = outputs[1] return logits @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: Random Baseline - Makes random predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"] test_dataset = dataset["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- if MODEL =="mlp": model = ConspiracyClassification.from_pretrained("ypesk/frugal-ai-mlp-baseline") emb_model = SentenceTransformer("paraphrase-MiniLM-L3-v2") batch_size = 6 test_texts = torch.Tensor(emb_model.encode([t['quote'] for t in test_dataset])) test_data = TensorDataset(test_texts) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) elif MODEL == "ct": model = CovidTwitterBertClassifier.from_pretrained("ypesk/ct-baseline") tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert') test_texts = [t['quote'] for t in test_dataset] MAX_LEN = 256 #1024 # < m some tweets will be truncated tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True) test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask'] test_token_type_ids = torch.tensor(test_token_type_ids) test_input_ids = torch.tensor(test_input_ids) test_attention_mask = torch.tensor(test_attention_mask) batch_size = 12 # test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) model.eval() predictions = [] for batch in tqdm(test_dataloader): b_input_ids, b_input_mask, b_token_type_ids = batch with torch.no_grad(): logits = model(b_input_ids, b_token_type_ids, b_input_mask) logits = logits.detach().cpu().numpy() predictions.extend(logits.argmax(1)) true_labels = test_dataset["label"] # Make random predictions (placeholder for actual model inference) #true_labels = test_dataset["label"] #predictions = [random.randint(0, 7) for _ in range(len(true_labels))] #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results