File size: 5,672 Bytes
4d6e8c2
 
 
 
 
4d8b8b9
 
b4c7827
4d8b8b9
 
 
 
 
 
4d6e8c2
 
 
 
 
 
5414c47
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76fccaf
 
4d6e8c2
 
 
 
70f5f26
 
 
 
 
4d8b8b9
 
 
 
 
 
5414c47
4d8b8b9
5414c47
4d8b8b9
5414c47
 
 
 
 
 
 
 
 
4d8b8b9
5414c47
 
 
 
 
278fbfb
5414c47
4d8b8b9
5414c47
 
 
 
 
 
 
 
4d8b8b9
5414c47
 
 
 
 
 
b4c7827
5414c47
 
 
 
 
 
 
 
 
 
 
4d6e8c2
5414c47
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import numpy as np
from huggingface_hub import PyTorchModelHubMixin
from tqdm import tqdm, trange

import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import BertForPreTraining, BertModel, AutoTokenizer, BertForSequenceClassification, RobertaForSequenceClassification


from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "First Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    class CovidTwitterBertClassifier(
        nn.Module,
        PyTorchModelHubMixin, 
        # optionally, you can add metadata which gets pushed to the model card
    ):    
        def __init__(self, num_classes):
            super().__init__()
            self.n_classes = num_classes
            self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')    
            self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
    
            self.sigmoid = nn.Sigmoid()
            
        def forward(self, input_ids, token_type_ids, input_mask):
            outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
    
            logits = outputs[1]
            
            return logits  
    model = CovidTwitterBertClassifier.from_pretrained("ypesk/ct-baseline")
    model.eval()


    tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert')
    
    test_texts = [t['quote'] for t in test_dataset]

    MAX_LEN = 256 #1024 # < m some tweets will be truncated
    
    tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
    test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask']
    test_token_type_ids = torch.tensor(test_token_type_ids)
    
    test_input_ids = torch.tensor(test_input_ids)
    test_attention_mask = torch.tensor(test_attention_mask)

    batch_size = 12 #
    test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
    
    test_sampler = SequentialSampler(test_data)
    test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)

    predictions = []
    for batch in tqdm(test_dataloader):


        b_input_ids, b_input_mask, b_token_type_ids = batch
        with torch.no_grad():
            logits = model(b_input_ids, b_token_type_ids, b_input_mask)    

        logits = logits.detach().cpu().numpy()
        predictions.extend(logits.argmax(1))

    
    true_labels = test_dataset["label"]   
    # Make random predictions (placeholder for actual model inference)
    #true_labels = test_dataset["label"]
    #predictions = [random.randint(0, 7) for _ in range(len(true_labels))]

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results