Spaces:
Sleeping
Sleeping
File size: 5,672 Bytes
4d6e8c2 4d8b8b9 b4c7827 4d8b8b9 4d6e8c2 5414c47 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 76fccaf 4d6e8c2 70f5f26 4d8b8b9 5414c47 4d8b8b9 5414c47 4d8b8b9 5414c47 4d8b8b9 5414c47 278fbfb 5414c47 4d8b8b9 5414c47 4d8b8b9 5414c47 b4c7827 5414c47 4d6e8c2 5414c47 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import numpy as np
from huggingface_hub import PyTorchModelHubMixin
from tqdm import tqdm, trange
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import BertForPreTraining, BertModel, AutoTokenizer, BertForSequenceClassification, RobertaForSequenceClassification
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "First Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
class CovidTwitterBertClassifier(
nn.Module,
PyTorchModelHubMixin,
# optionally, you can add metadata which gets pushed to the model card
):
def __init__(self, num_classes):
super().__init__()
self.n_classes = num_classes
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
self.sigmoid = nn.Sigmoid()
def forward(self, input_ids, token_type_ids, input_mask):
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
logits = outputs[1]
return logits
model = CovidTwitterBertClassifier.from_pretrained("ypesk/ct-baseline")
model.eval()
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert')
test_texts = [t['quote'] for t in test_dataset]
MAX_LEN = 256 #1024 # < m some tweets will be truncated
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask']
test_token_type_ids = torch.tensor(test_token_type_ids)
test_input_ids = torch.tensor(test_input_ids)
test_attention_mask = torch.tensor(test_attention_mask)
batch_size = 12 #
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
predictions = []
for batch in tqdm(test_dataloader):
b_input_ids, b_input_mask, b_token_type_ids = batch
with torch.no_grad():
logits = model(b_input_ids, b_token_type_ids, b_input_mask)
logits = logits.detach().cpu().numpy()
predictions.extend(logits.argmax(1))
true_labels = test_dataset["label"]
# Make random predictions (placeholder for actual model inference)
#true_labels = test_dataset["label"]
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |