from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random import os from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info import tensorflow as tf from huggingface_hub import hf_hub_download from transformers import TFElectraForSequenceClassification, ElectraTokenizer, ElectraConfig import numpy as np router = APIRouter() DESCRIPTION = "Electra_Base" ROUTE = "/text" # # Load model and tokenizer # model_weights_path = hf_hub_download(repo_id="jennasparks/electra-tf", filename="tf_model.h5") # model_config_path = hf_hub_download(repo_id="jennasparks/electra-tf", filename="config.json") model_repo = "jennasparks/electra_tf" config = ElectraConfig.from_pretrained(model_repo) model = TFElectraForSequenceClassification.from_pretrained(model_repo) tokenizer = ElectraTokenizer.from_pretrained("google/electra-base-discriminator") @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: Electra """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN")) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset test_dataset = dataset["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- #make predictions predictions = [] for i in range(len(test_dataset["quote"])): encoded_input = tokenizer(test_dataset["quote"][i], truncation=True, padding=True, return_tensors="tf") outputs = model(encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"], training=False) predictions.append(tf.argmax(outputs.logits, axis=1)) # Get true labels true_labels = test_dataset["label"] #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results