Update tasks/text.py
Browse files- tasks/text.py +110 -25
tasks/text.py
CHANGED
@@ -1,23 +1,103 @@
|
|
1 |
-
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
|
|
5 |
import random
|
|
|
|
|
|
|
6 |
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
router = APIRouter()
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
ROUTE = "/text"
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"""
|
19 |
Evaluate text classification for climate disinformation detection.
|
20 |
-
|
21 |
Current Model: Random Baseline
|
22 |
- Makes random predictions from the label space (0-7)
|
23 |
- Used as a baseline for comparison
|
@@ -34,7 +114,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
34 |
"4_solutions_harmful_unnecessary": 4,
|
35 |
"5_science_unreliable": 5,
|
36 |
"6_proponents_biased": 6,
|
37 |
-
"7_fossil_fuels_needed": 7
|
38 |
}
|
39 |
|
40 |
# Load and prepare the dataset
|
@@ -44,39 +124,44 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
44 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
45 |
|
46 |
# Split dataset
|
47 |
-
train_test = dataset["train"]
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
# Start tracking emissions
|
51 |
tracker.start()
|
52 |
tracker.start_task("inference")
|
53 |
|
54 |
-
|
55 |
# YOUR MODEL INFERENCE CODE HERE
|
56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
-
|
58 |
-
|
59 |
-
# Make random predictions (placeholder for actual model inference)
|
60 |
true_labels = test_dataset["label"]
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
# YOUR MODEL INFERENCE STOPS HERE
|
65 |
-
|
66 |
|
67 |
-
|
68 |
# Stop tracking emissions
|
69 |
emissions_data = tracker.stop_task()
|
70 |
-
|
71 |
# Calculate accuracy
|
72 |
accuracy = accuracy_score(true_labels, predictions)
|
73 |
-
|
74 |
# Prepare results dictionary
|
75 |
results = {
|
76 |
"username": username,
|
77 |
"space_url": space_url,
|
78 |
"submission_timestamp": datetime.now().isoformat(),
|
79 |
-
"model_description":
|
80 |
"accuracy": float(accuracy),
|
81 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
82 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
@@ -85,8 +170,8 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
85 |
"dataset_config": {
|
86 |
"dataset_name": request.dataset_name,
|
87 |
"test_size": request.test_size,
|
88 |
-
"test_seed": request.test_seed
|
89 |
-
}
|
90 |
}
|
91 |
-
|
92 |
-
return results
|
|
|
1 |
+
from fastapi import APIRouter, Query
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
+
import numpy as np
|
6 |
import random
|
7 |
+
import torch
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
|
10 |
|
11 |
from .utils.evaluation import TextEvaluationRequest
|
12 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
13 |
|
14 |
router = APIRouter()
|
15 |
|
16 |
+
MODEL_TYPE = "bert-mini"
|
17 |
+
DESCRIPTIONS = {
|
18 |
+
"baseline": "baseline most common class",
|
19 |
+
"bert-base": "bert base fine tuned on just training data, Nvidia T4 small",
|
20 |
+
"bert-medium": "bert medium fine tuned on just training data, Nvidia T4 small",
|
21 |
+
"bert-small": "bert small fine tuned on just training data, Nvidia T4 small",
|
22 |
+
"bert-mini": "bert mini fine tuned on just training data, Nvidia T4 small",
|
23 |
+
"bert-tiny": "bert tiny fine tuned on just training data, Nvidia T4 small",
|
24 |
+
}
|
25 |
ROUTE = "/text"
|
26 |
|
27 |
+
|
28 |
+
class TextDataset(Dataset):
|
29 |
+
def __init__(self, texts, tokenizer, max_length=256):
|
30 |
+
self.texts = texts
|
31 |
+
self.encodings = tokenizer(
|
32 |
+
texts,
|
33 |
+
truncation=True,
|
34 |
+
padding=True,
|
35 |
+
max_length=max_length,
|
36 |
+
return_tensors="pt",
|
37 |
+
)
|
38 |
+
|
39 |
+
def __getitem__(self, idx):
|
40 |
+
item = {key: val[idx] for key, val in self.encodings.items()}
|
41 |
+
return item
|
42 |
+
|
43 |
+
def __len__(self) -> int:
|
44 |
+
return len(self.texts)
|
45 |
+
|
46 |
+
|
47 |
+
def baseline_model(dataset_length: int):
|
48 |
+
# Make random predictions (placeholder for actual model inference)
|
49 |
+
# predictions = [random.randint(0, 7) for _ in range(dataset_length)]
|
50 |
+
|
51 |
+
# My favorite baseline is the most common class.
|
52 |
+
predictions = [0] * dataset_length
|
53 |
+
|
54 |
+
return predictions
|
55 |
+
|
56 |
+
|
57 |
+
def bert_model(test_dataset: dict, model_type: str):
|
58 |
+
print("Starting my code block.")
|
59 |
+
texts = test_dataset["quote"]
|
60 |
+
|
61 |
+
model_repo = f"Nonnormalizable/frugal-ai-text-{model_type}"
|
62 |
+
print(f"Loading from model_repo: {model_repo}")
|
63 |
+
config = AutoConfig.from_pretrained(model_repo)
|
64 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_repo)
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
66 |
+
|
67 |
+
if torch.cuda.is_available():
|
68 |
+
device = torch.device("cuda")
|
69 |
+
else:
|
70 |
+
device = torch.device("cpu")
|
71 |
+
print("Using device:", device)
|
72 |
+
model = model.to(device)
|
73 |
+
dataset = TextDataset(texts, tokenizer=tokenizer)
|
74 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
|
75 |
+
model.eval()
|
76 |
+
with torch.no_grad():
|
77 |
+
print("Starting model run.")
|
78 |
+
predictions = np.array([])
|
79 |
+
for batch in dataloader:
|
80 |
+
test_input_ids = batch["input_ids"].to(device)
|
81 |
+
test_attention_mask = batch["attention_mask"].to(device)
|
82 |
+
outputs = model(test_input_ids, test_attention_mask)
|
83 |
+
p = torch.argmax(outputs.logits, dim=1)
|
84 |
+
predictions = np.append(predictions, p.cpu().numpy())
|
85 |
+
print("End of model run.")
|
86 |
+
|
87 |
+
print("End of my code block.")
|
88 |
+
return predictions
|
89 |
+
|
90 |
+
|
91 |
+
@router.post(ROUTE, tags=["Text Task"])
|
92 |
+
async def evaluate_text(
|
93 |
+
request: TextEvaluationRequest,
|
94 |
+
model_type: str = MODEL_TYPE,
|
95 |
+
# This should be an API query parameter, but it looks like the submission repo
|
96 |
+
# https://huggingface.co/spaces/frugal-ai-challenge/submission-portal
|
97 |
+
# is built in a way to not accept any other endpoints or parameters.
|
98 |
+
):
|
99 |
"""
|
100 |
Evaluate text classification for climate disinformation detection.
|
|
|
101 |
Current Model: Random Baseline
|
102 |
- Makes random predictions from the label space (0-7)
|
103 |
- Used as a baseline for comparison
|
|
|
114 |
"4_solutions_harmful_unnecessary": 4,
|
115 |
"5_science_unreliable": 5,
|
116 |
"6_proponents_biased": 6,
|
117 |
+
"7_fossil_fuels_needed": 7,
|
118 |
}
|
119 |
|
120 |
# Load and prepare the dataset
|
|
|
124 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
125 |
|
126 |
# Split dataset
|
127 |
+
train_test = dataset["train"].train_test_split(
|
128 |
+
test_size=request.test_size, seed=request.test_seed
|
129 |
+
)
|
130 |
+
test_dataset = train_test["test"]
|
131 |
+
|
132 |
# Start tracking emissions
|
133 |
tracker.start()
|
134 |
tracker.start_task("inference")
|
135 |
|
136 |
+
# --------------------------------------------------------------------------------------------
|
137 |
# YOUR MODEL INFERENCE CODE HERE
|
138 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
139 |
+
# --------------------------------------------------------------------------------------------
|
140 |
+
|
|
|
141 |
true_labels = test_dataset["label"]
|
142 |
+
if model_type == "baseline":
|
143 |
+
predictions = baseline_model(len(true_labels))
|
144 |
+
elif model_type[:5] == "bert-":
|
145 |
+
predictions = bert_model(test_dataset, model_type)
|
146 |
+
else:
|
147 |
+
raise ValueError(model_type)
|
148 |
|
149 |
+
# --------------------------------------------------------------------------------------------
|
150 |
# YOUR MODEL INFERENCE STOPS HERE
|
151 |
+
# --------------------------------------------------------------------------------------------
|
152 |
|
|
|
153 |
# Stop tracking emissions
|
154 |
emissions_data = tracker.stop_task()
|
155 |
+
|
156 |
# Calculate accuracy
|
157 |
accuracy = accuracy_score(true_labels, predictions)
|
158 |
+
|
159 |
# Prepare results dictionary
|
160 |
results = {
|
161 |
"username": username,
|
162 |
"space_url": space_url,
|
163 |
"submission_timestamp": datetime.now().isoformat(),
|
164 |
+
"model_description": DESCRIPTIONS[model_type],
|
165 |
"accuracy": float(accuracy),
|
166 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
167 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
|
|
170 |
"dataset_config": {
|
171 |
"dataset_name": request.dataset_name,
|
172 |
"test_size": request.test_size,
|
173 |
+
"test_seed": request.test_seed,
|
174 |
+
},
|
175 |
}
|
176 |
+
|
177 |
+
return results
|