Commit
·
7bc734f
1
Parent(s):
250d2de
Training bert-tiny. More integratoin with model card data.
Browse files- Finetune BERT.ipynb +163 -462
Finetune BERT.ipynb
CHANGED
@@ -14,11 +14,11 @@
|
|
14 |
"id": "73e72549-69f2-46b5-b0f5-655777139972",
|
15 |
"metadata": {
|
16 |
"execution": {
|
17 |
-
"iopub.execute_input": "2025-01-
|
18 |
-
"iopub.status.busy": "2025-01-
|
19 |
-
"iopub.status.idle": "2025-01-
|
20 |
-
"shell.execute_reply": "2025-01-
|
21 |
-
"shell.execute_reply.started": "2025-01-
|
22 |
}
|
23 |
},
|
24 |
"outputs": [],
|
@@ -45,11 +45,11 @@
|
|
45 |
"id": "07e0787e-c72b-41f3-baba-43cef3f8d6f8",
|
46 |
"metadata": {
|
47 |
"execution": {
|
48 |
-
"iopub.execute_input": "2025-01-
|
49 |
-
"iopub.status.busy": "2025-01-
|
50 |
-
"iopub.status.idle": "2025-01-
|
51 |
-
"shell.execute_reply": "2025-01-
|
52 |
-
"shell.execute_reply.started": "2025-01-
|
53 |
}
|
54 |
},
|
55 |
"outputs": [],
|
@@ -71,11 +71,11 @@
|
|
71 |
"id": "d4b79fb9-5e70-4600-8885-94bc0a6e917c",
|
72 |
"metadata": {
|
73 |
"execution": {
|
74 |
-
"iopub.execute_input": "2025-01-
|
75 |
-
"iopub.status.busy": "2025-01-
|
76 |
-
"iopub.status.idle": "2025-01-
|
77 |
-
"shell.execute_reply": "2025-01-
|
78 |
-
"shell.execute_reply.started": "2025-01-
|
79 |
}
|
80 |
},
|
81 |
"outputs": [],
|
@@ -109,7 +109,7 @@
|
|
109 |
" avg_loss = total_loss / len(dataloader)\n",
|
110 |
" avg_acc = total_correct / total_length\n",
|
111 |
" model.train()\n",
|
112 |
-
" return avg_loss, avg_acc\n",
|
113 |
"\n",
|
114 |
"\n",
|
115 |
"def print_model_status(epoch, num_epochs, model, train_dataloader, test_dataloader):\n",
|
@@ -117,7 +117,14 @@
|
|
117 |
" test_loss, test_acc = model_metrics(model, test_dataloader)\n",
|
118 |
" loss_str = f\"Loss: Train {train_loss:0.3f}, Test {test_loss:0.3f}\"\n",
|
119 |
" acc_str = f\"Acc: Train {train_acc:0.3f}, Test {test_acc:0.3f}\"\n",
|
120 |
-
" my_print(f\"Epoch {epoch+1}/{num_epochs} done. {loss_str}; and {acc_str}\")\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
"\n",
|
122 |
"\n",
|
123 |
"class BertClassifier(nn.Module, PyTorchModelHubMixin):\n",
|
@@ -136,7 +143,7 @@
|
|
136 |
"\n",
|
137 |
"\n",
|
138 |
"class TextDataset(Dataset):\n",
|
139 |
-
" def __init__(self, texts, labels, tokenizer, max_length=
|
140 |
" self.encodings = tokenizer(\n",
|
141 |
" texts,\n",
|
142 |
" truncation=True,\n",
|
@@ -160,7 +167,7 @@
|
|
160 |
" criterion = nn.CrossEntropyLoss()\n",
|
161 |
" model.train()\n",
|
162 |
"\n",
|
163 |
-
" print_model_status(-1, num_epochs, model, train_dataloader, test_dataloader)\n",
|
164 |
" for epoch in range(num_epochs):\n",
|
165 |
" total_loss = 0\n",
|
166 |
" for batch in train_dataloader:\n",
|
@@ -178,7 +185,10 @@
|
|
178 |
"\n",
|
179 |
" total_loss += loss.item()\n",
|
180 |
" avg_loss = total_loss / len(train_dataloader)\n",
|
181 |
-
" print_model_status(
|
|
|
|
|
|
|
182 |
]
|
183 |
},
|
184 |
{
|
@@ -187,11 +197,11 @@
|
|
187 |
"id": "07131bce-23ad-4787-8622-cce401f3e5ce",
|
188 |
"metadata": {
|
189 |
"execution": {
|
190 |
-
"iopub.execute_input": "2025-01-
|
191 |
-
"iopub.status.busy": "2025-01-
|
192 |
-
"iopub.status.idle": "2025-01-
|
193 |
-
"shell.execute_reply": "2025-01-
|
194 |
-
"shell.execute_reply.started": "2025-01-
|
195 |
}
|
196 |
},
|
197 |
"outputs": [],
|
@@ -211,11 +221,11 @@
|
|
211 |
"id": "695bc080-bbd7-4937-af5b-50db1c936500",
|
212 |
"metadata": {
|
213 |
"execution": {
|
214 |
-
"iopub.execute_input": "2025-01-
|
215 |
-
"iopub.status.busy": "2025-01-
|
216 |
-
"iopub.status.idle": "2025-01-
|
217 |
-
"shell.execute_reply": "2025-01-
|
218 |
-
"shell.execute_reply.started": "2025-01-
|
219 |
}
|
220 |
},
|
221 |
"outputs": [],
|
@@ -223,10 +233,17 @@
|
|
223 |
"def run_training(\n",
|
224 |
" max_dataset_size=16 * 200,\n",
|
225 |
" bert_variety=\"bert-base-uncased\",\n",
|
226 |
-
" max_length=
|
227 |
" num_epochs=3,\n",
|
228 |
" batch_size=32,\n",
|
229 |
"):\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
" hf_dataset = load_dataset(\"quotaclimat/frugalaichallenge-text-train\")\n",
|
231 |
" test_size = 0.2\n",
|
232 |
" test_seed = 42\n",
|
@@ -272,8 +289,10 @@
|
|
272 |
" text_dataset_test, batch_size=batch_size, shuffle=False\n",
|
273 |
" )\n",
|
274 |
"\n",
|
275 |
-
" train_model(
|
276 |
-
"
|
|
|
|
|
277 |
]
|
278 |
},
|
279 |
{
|
@@ -302,61 +321,57 @@
|
|
302 |
},
|
303 |
{
|
304 |
"cell_type": "code",
|
305 |
-
"execution_count":
|
306 |
-
"id": "
|
307 |
"metadata": {
|
308 |
"execution": {
|
309 |
-
"iopub.execute_input": "2025-01-
|
310 |
-
"iopub.status.busy": "2025-01-
|
311 |
-
"iopub.status.idle": "2025-01-20T20:17:14.130284Z",
|
312 |
-
"shell.execute_reply": "2025-01-20T20:17:14.129964Z",
|
313 |
-
"shell.execute_reply.started": "2025-01-20T20:17:06.824506Z"
|
314 |
}
|
315 |
},
|
316 |
-
"outputs": [
|
317 |
-
{
|
318 |
-
"name": "stdout",
|
319 |
-
"output_type": "stream",
|
320 |
-
"text": [
|
321 |
-
"2025-01-20 12:17:10 Epoch 0/3 done. Loss: Train 2.111, Test 2.247; and Acc: Train 0.281, Test 0.156\n",
|
322 |
-
"2025-01-20 12:17:11 Epoch 1/3 done. Loss: Train 2.026, Test 2.222; and Acc: Train 0.344, Test 0.156\n",
|
323 |
-
"2025-01-20 12:17:12 Epoch 2/3 done. Loss: Train 1.943, Test 2.194; and Acc: Train 0.312, Test 0.156\n",
|
324 |
-
"2025-01-20 12:17:14 Epoch 3/3 done. Loss: Train 1.859, Test 2.159; and Acc: Train 0.344, Test 0.156\n"
|
325 |
-
]
|
326 |
-
}
|
327 |
-
],
|
328 |
"source": [
|
329 |
-
"model, tokenizer = run_training(\n",
|
330 |
-
" max_dataset_size=16 *
|
331 |
-
" bert_variety=\"
|
332 |
" max_length=128,\n",
|
333 |
-
" num_epochs=
|
334 |
" batch_size=32,\n",
|
335 |
")"
|
336 |
]
|
337 |
},
|
338 |
{
|
339 |
"cell_type": "code",
|
340 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
"id": "0aedfcca-843e-4f4c-8062-3e4625161bcc",
|
342 |
"metadata": {
|
343 |
-
"
|
344 |
-
|
345 |
-
"
|
346 |
-
|
347 |
-
|
348 |
-
"shell.execute_reply.started": "2025-01-20T20:17:14.130869Z"
|
349 |
-
}
|
350 |
},
|
351 |
-
"outputs": [
|
352 |
-
{
|
353 |
-
"name": "stdout",
|
354 |
-
"output_type": "stream",
|
355 |
-
"text": [
|
356 |
-
"2025-01-20 12:17:14 Predictions: tensor([4, 1, 1, 1, 3, 1, 1], device='mps:0')\n"
|
357 |
-
]
|
358 |
-
}
|
359 |
-
],
|
360 |
"source": [
|
361 |
"model.eval()\n",
|
362 |
"test_text = [\n",
|
@@ -373,6 +388,7 @@
|
|
373 |
" truncation=True,\n",
|
374 |
" padding=True,\n",
|
375 |
" return_tensors=\"pt\",\n",
|
|
|
376 |
")\n",
|
377 |
"\n",
|
378 |
"with torch.no_grad():\n",
|
@@ -392,86 +408,66 @@
|
|
392 |
]
|
393 |
},
|
394 |
{
|
395 |
-
"cell_type": "
|
396 |
-
"
|
397 |
-
"
|
398 |
-
"metadata": {
|
399 |
-
"execution": {
|
400 |
-
"iopub.execute_input": "2025-01-20T20:17:14.194160Z",
|
401 |
-
"iopub.status.busy": "2025-01-20T20:17:14.194076Z",
|
402 |
-
"iopub.status.idle": "2025-01-20T20:25:46.660251Z",
|
403 |
-
"shell.execute_reply": "2025-01-20T20:25:46.659652Z",
|
404 |
-
"shell.execute_reply.started": "2025-01-20T20:17:14.194152Z"
|
405 |
-
}
|
406 |
-
},
|
407 |
-
"outputs": [
|
408 |
-
{
|
409 |
-
"name": "stdout",
|
410 |
-
"output_type": "stream",
|
411 |
-
"text": [
|
412 |
-
"2025-01-20 12:18:02 Epoch 0/3 done. Loss: Train 2.106, Test 2.091; and Acc: Train 0.118, Test 0.135\n",
|
413 |
-
"2025-01-20 12:20:37 Epoch 1/3 done. Loss: Train 0.989, Test 1.114; and Acc: Train 0.647, Test 0.603\n",
|
414 |
-
"2025-01-20 12:23:12 Epoch 2/3 done. Loss: Train 0.584, Test 0.928; and Acc: Train 0.825, Test 0.669\n",
|
415 |
-
"2025-01-20 12:25:46 Epoch 3/3 done. Loss: Train 0.313, Test 0.950; and Acc: Train 0.913, Test 0.683\n"
|
416 |
-
]
|
417 |
-
}
|
418 |
-
],
|
419 |
"source": [
|
420 |
-
"model,
|
421 |
-
"
|
422 |
-
"
|
423 |
-
"
|
424 |
-
"
|
425 |
-
"
|
426 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
]
|
428 |
},
|
429 |
{
|
430 |
"cell_type": "code",
|
431 |
-
"execution_count":
|
432 |
-
"id": "
|
433 |
"metadata": {
|
434 |
"execution": {
|
435 |
-
"iopub.execute_input": "2025-01-
|
436 |
-
"iopub.status.busy": "2025-01-
|
437 |
-
"iopub.status.idle": "2025-01-
|
438 |
-
"shell.execute_reply": "2025-01-
|
439 |
-
"shell.execute_reply.started": "2025-01-
|
440 |
}
|
441 |
},
|
442 |
-
"outputs": [
|
443 |
-
{
|
444 |
-
"name": "stdout",
|
445 |
-
"output_type": "stream",
|
446 |
-
"text": [
|
447 |
-
"2025-01-20 12:26:34 Epoch 0/3 done. Loss: Train 2.174, Test 2.168; and Acc: Train 0.096, Test 0.094\n",
|
448 |
-
"2025-01-20 12:29:21 Epoch 1/3 done. Loss: Train 0.878, Test 1.033; and Acc: Train 0.712, Test 0.653\n",
|
449 |
-
"2025-01-20 12:32:07 Epoch 2/3 done. Loss: Train 0.458, Test 0.906; and Acc: Train 0.869, Test 0.678\n",
|
450 |
-
"2025-01-20 12:34:54 Epoch 3/3 done. Loss: Train 0.218, Test 0.959; and Acc: Train 0.944, Test 0.695\n"
|
451 |
-
]
|
452 |
-
}
|
453 |
-
],
|
454 |
"source": [
|
455 |
-
"
|
456 |
" max_dataset_size=\"full\",\n",
|
457 |
-
" bert_variety=\"
|
458 |
-
" max_length=
|
459 |
-
" num_epochs=3,\n",
|
460 |
" batch_size=16,\n",
|
461 |
")"
|
462 |
]
|
463 |
},
|
464 |
{
|
465 |
"cell_type": "code",
|
466 |
-
"execution_count":
|
467 |
"id": "28354e8c-886a-4523-8968-8c688c13f6a3",
|
468 |
"metadata": {
|
469 |
"execution": {
|
470 |
-
"iopub.execute_input": "2025-01-
|
471 |
-
"iopub.status.busy": "2025-01-
|
472 |
-
"iopub.status.idle": "2025-01-
|
473 |
-
"shell.execute_reply": "2025-01-
|
474 |
-
"shell.execute_reply.started": "2025-01-
|
475 |
}
|
476 |
},
|
477 |
"outputs": [
|
@@ -479,20 +475,29 @@
|
|
479 |
"name": "stdout",
|
480 |
"output_type": "stream",
|
481 |
"text": [
|
482 |
-
"2025-01-
|
483 |
-
"2025-01-
|
484 |
-
"2025-01-
|
485 |
-
"2025-01-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
]
|
487 |
}
|
488 |
],
|
489 |
"source": [
|
490 |
-
"model, tokenizer = run_training(\n",
|
491 |
-
"
|
492 |
-
"
|
493 |
-
" max_length=256,\n",
|
494 |
-
" num_epochs=3,\n",
|
495 |
-
" batch_size=16,\n",
|
496 |
")"
|
497 |
]
|
498 |
},
|
@@ -506,240 +511,33 @@
|
|
506 |
},
|
507 |
{
|
508 |
"cell_type": "code",
|
509 |
-
"execution_count":
|
510 |
"id": "ec2516f9-79f2-4ae1-ab9a-9a51a7a50587",
|
511 |
"metadata": {
|
512 |
"execution": {
|
513 |
-
"iopub.execute_input": "2025-01-
|
514 |
-
"iopub.status.busy": "2025-01-
|
515 |
-
"iopub.status.idle": "2025-01-
|
516 |
-
"shell.execute_reply": "2025-01-
|
517 |
-
"shell.execute_reply.started": "2025-01-
|
518 |
},
|
519 |
"scrolled": true
|
520 |
},
|
521 |
"outputs": [
|
522 |
{
|
523 |
-
"
|
524 |
-
"
|
525 |
-
"
|
526 |
-
|
527 |
-
"
|
528 |
-
"datasets:\n",
|
529 |
-
"- QuotaClimat/frugalaichallenge-text-train\n",
|
530 |
-
"language:\n",
|
531 |
-
"- en\n",
|
532 |
-
"license: apache-2.0\n",
|
533 |
-
"model_name: frugal-ai-text-bert-base\n",
|
534 |
-
"pipeline_tag: text-classification\n",
|
535 |
-
"tags:\n",
|
536 |
-
"- model_hub_mixin\n",
|
537 |
-
"- pytorch_model_hub_mixin\n",
|
538 |
-
"- climate\n",
|
539 |
-
"---\n",
|
540 |
-
"\n",
|
541 |
-
"# Model Card for Model ID\n",
|
542 |
-
"\n",
|
543 |
-
"<!-- Provide a quick summary of what the model is/does. -->\n",
|
544 |
-
"\n",
|
545 |
-
"Classify text into 8 categories of climate misinformation.\n",
|
546 |
-
"\n",
|
547 |
-
"## Model Details\n",
|
548 |
-
"\n",
|
549 |
-
"### Model Description\n",
|
550 |
-
"\n",
|
551 |
-
"<!-- Provide a longer summary of what this model is. -->\n",
|
552 |
-
"\n",
|
553 |
-
"Fine trained BERT for classifying climate information as part of the Frugal AI Challenge, for submission to https://huggingface.co/frugal-ai-challenge and scoring on accuracy and efficiency. Trainied on only the non-evaluation 80% of the data, so it's (non-cheating) score will be lower.\n",
|
554 |
-
"\n",
|
555 |
-
"- **Developed by:** Andre Bach\n",
|
556 |
-
"- **Funded by [optional]:** N/A\n",
|
557 |
-
"- **Shared by [optional]:** Andre Bach\n",
|
558 |
-
"- **Model type:** Text classification\n",
|
559 |
-
"- **Language(s) (NLP):** ['en']\n",
|
560 |
-
"- **License:** apache-2.0\n",
|
561 |
-
"- **Finetuned from model [optional]:** google-bert/bert-base-uncased\n",
|
562 |
-
"\n",
|
563 |
-
"### Model Sources [optional]\n",
|
564 |
-
"\n",
|
565 |
-
"<!-- Provide the basic links for the model. -->\n",
|
566 |
-
"\n",
|
567 |
-
"- **Repository:** frugal-ai-text-bert-base\n",
|
568 |
-
"- **Paper [optional]:** [More Information Needed]\n",
|
569 |
-
"- **Demo [optional]:** [More Information Needed]\n",
|
570 |
-
"\n",
|
571 |
-
"## Uses\n",
|
572 |
-
"\n",
|
573 |
-
"<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->\n",
|
574 |
-
"\n",
|
575 |
-
"### Direct Use\n",
|
576 |
-
"\n",
|
577 |
-
"<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->\n",
|
578 |
-
"\n",
|
579 |
-
"[More Information Needed]\n",
|
580 |
-
"\n",
|
581 |
-
"### Downstream Use [optional]\n",
|
582 |
-
"\n",
|
583 |
-
"<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->\n",
|
584 |
-
"\n",
|
585 |
-
"[More Information Needed]\n",
|
586 |
-
"\n",
|
587 |
-
"### Out-of-Scope Use\n",
|
588 |
-
"\n",
|
589 |
-
"<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->\n",
|
590 |
-
"\n",
|
591 |
-
"[More Information Needed]\n",
|
592 |
-
"\n",
|
593 |
-
"## Bias, Risks, and Limitations\n",
|
594 |
-
"\n",
|
595 |
-
"<!-- This section is meant to convey both technical and sociotechnical limitations. -->\n",
|
596 |
-
"\n",
|
597 |
-
"[More Information Needed]\n",
|
598 |
-
"\n",
|
599 |
-
"### Recommendations\n",
|
600 |
-
"\n",
|
601 |
-
"<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->\n",
|
602 |
-
"\n",
|
603 |
-
"Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.\n",
|
604 |
-
"\n",
|
605 |
-
"## How to Get Started with the Model\n",
|
606 |
-
"\n",
|
607 |
-
"Use the code below to get started with the model.\n",
|
608 |
-
"\n",
|
609 |
-
"[More Information Needed]\n",
|
610 |
-
"\n",
|
611 |
-
"## Training Details\n",
|
612 |
-
"\n",
|
613 |
-
"### Training Data\n",
|
614 |
-
"\n",
|
615 |
-
"<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->\n",
|
616 |
-
"\n",
|
617 |
-
"[More Information Needed]\n",
|
618 |
-
"\n",
|
619 |
-
"### Training Procedure\n",
|
620 |
-
"\n",
|
621 |
-
"<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->\n",
|
622 |
-
"\n",
|
623 |
-
"#### Preprocessing [optional]\n",
|
624 |
-
"\n",
|
625 |
-
"[More Information Needed]\n",
|
626 |
-
"\n",
|
627 |
-
"\n",
|
628 |
-
"#### Training Hyperparameters\n",
|
629 |
-
"\n",
|
630 |
-
"- **Training regime:** {'max_dataset_size': 'full', 'bert_variety': 'bert-base-uncased', 'max_length': 256, 'num_epochs': 3, 'batch_size': 16} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->\n",
|
631 |
-
"\n",
|
632 |
-
"#### Speeds, Sizes, Times [optional]\n",
|
633 |
-
"\n",
|
634 |
-
"<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->\n",
|
635 |
-
"\n",
|
636 |
-
"[More Information Needed]\n",
|
637 |
-
"\n",
|
638 |
-
"## Evaluation\n",
|
639 |
-
"\n",
|
640 |
-
"<!-- This section describes the evaluation protocols and provides the results. -->\n",
|
641 |
-
"\n",
|
642 |
-
"### Testing Data, Factors & Metrics\n",
|
643 |
-
"\n",
|
644 |
-
"#### Testing Data\n",
|
645 |
-
"\n",
|
646 |
-
"<!-- This should link to a Dataset Card if possible. -->\n",
|
647 |
-
"\n",
|
648 |
-
"[More Information Needed]\n",
|
649 |
-
"\n",
|
650 |
-
"#### Factors\n",
|
651 |
-
"\n",
|
652 |
-
"<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->\n",
|
653 |
-
"\n",
|
654 |
-
"[More Information Needed]\n",
|
655 |
-
"\n",
|
656 |
-
"#### Metrics\n",
|
657 |
-
"\n",
|
658 |
-
"<!-- These are the evaluation metrics being used, ideally with a description of why. -->\n",
|
659 |
-
"\n",
|
660 |
-
"{'loss_train': 0.154, 'loss_test': 0.978, 'acc_train': 0.959, 'acc_test': 0.705}\n",
|
661 |
-
"\n",
|
662 |
-
"### Results\n",
|
663 |
-
"\n",
|
664 |
-
"[More Information Needed]\n",
|
665 |
-
"\n",
|
666 |
-
"#### Summary\n",
|
667 |
-
"\n",
|
668 |
-
"\n",
|
669 |
-
"\n",
|
670 |
-
"## Model Examination [optional]\n",
|
671 |
-
"\n",
|
672 |
-
"<!-- Relevant interpretability work for the model goes here -->\n",
|
673 |
-
"\n",
|
674 |
-
"[More Information Needed]\n",
|
675 |
-
"\n",
|
676 |
-
"## Environmental Impact\n",
|
677 |
-
"\n",
|
678 |
-
"<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->\n",
|
679 |
-
"\n",
|
680 |
-
"Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).\n",
|
681 |
-
"\n",
|
682 |
-
"- **Hardware Type:** [More Information Needed]\n",
|
683 |
-
"- **Hours used:** [More Information Needed]\n",
|
684 |
-
"- **Cloud Provider:** [More Information Needed]\n",
|
685 |
-
"- **Compute Region:** [More Information Needed]\n",
|
686 |
-
"- **Carbon Emitted:** [More Information Needed]\n",
|
687 |
-
"\n",
|
688 |
-
"## Technical Specifications [optional]\n",
|
689 |
-
"\n",
|
690 |
-
"### Model Architecture and Objective\n",
|
691 |
-
"\n",
|
692 |
-
"[More Information Needed]\n",
|
693 |
-
"\n",
|
694 |
-
"### Compute Infrastructure\n",
|
695 |
-
"\n",
|
696 |
-
"[More Information Needed]\n",
|
697 |
-
"\n",
|
698 |
-
"#### Hardware\n",
|
699 |
-
"\n",
|
700 |
-
"[More Information Needed]\n",
|
701 |
-
"\n",
|
702 |
-
"#### Software\n",
|
703 |
-
"\n",
|
704 |
-
"[More Information Needed]\n",
|
705 |
-
"\n",
|
706 |
-
"## Citation [optional]\n",
|
707 |
-
"\n",
|
708 |
-
"<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->\n",
|
709 |
-
"\n",
|
710 |
-
"**BibTeX:**\n",
|
711 |
-
"\n",
|
712 |
-
"[More Information Needed]\n",
|
713 |
-
"\n",
|
714 |
-
"**APA:**\n",
|
715 |
-
"\n",
|
716 |
-
"[More Information Needed]\n",
|
717 |
-
"\n",
|
718 |
-
"## Glossary [optional]\n",
|
719 |
-
"\n",
|
720 |
-
"<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->\n",
|
721 |
-
"\n",
|
722 |
-
"[More Information Needed]\n",
|
723 |
-
"\n",
|
724 |
-
"## More Information [optional]\n",
|
725 |
-
"\n",
|
726 |
-
"[More Information Needed]\n",
|
727 |
-
"\n",
|
728 |
-
"## Model Card Authors [optional]\n",
|
729 |
-
"\n",
|
730 |
-
"[More Information Needed]\n",
|
731 |
-
"\n",
|
732 |
-
"## Model Card Contact\n",
|
733 |
-
"\n",
|
734 |
-
"[More Information Needed]\n"
|
735 |
]
|
736 |
}
|
737 |
],
|
738 |
"source": [
|
739 |
-
"model_and_repo_name = \"frugal-ai-text-bert-
|
740 |
"card_data = ModelCardData(\n",
|
741 |
" model_name=model_and_repo_name,\n",
|
742 |
-
" base_model
|
743 |
" license=\"apache-2.0\",\n",
|
744 |
" language=[\"en\"],\n",
|
745 |
" datasets=[\"QuotaClimat/frugalaichallenge-text-train\"],\n",
|
@@ -827,6 +625,7 @@
|
|
827 |
" truncation=True,\n",
|
828 |
" padding=True,\n",
|
829 |
" return_tensors=\"pt\",\n",
|
|
|
830 |
")\n",
|
831 |
"\n",
|
832 |
"with torch.no_grad():\n",
|
@@ -967,105 +766,7 @@
|
|
967 |
},
|
968 |
"widgets": {
|
969 |
"application/vnd.jupyter.widget-state+json": {
|
970 |
-
"state": {
|
971 |
-
"47fba054bcbc4563934b6d25ea787e43": {
|
972 |
-
"model_module": "@jupyter-widgets/base",
|
973 |
-
"model_module_version": "2.0.0",
|
974 |
-
"model_name": "LayoutModel",
|
975 |
-
"state": {}
|
976 |
-
},
|
977 |
-
"5cdf8fe39a634d048f2140b3af85165f": {
|
978 |
-
"model_module": "@jupyter-widgets/base",
|
979 |
-
"model_module_version": "2.0.0",
|
980 |
-
"model_name": "LayoutModel",
|
981 |
-
"state": {}
|
982 |
-
},
|
983 |
-
"6a6b93c568744ed48ba6c58f84c3d59a": {
|
984 |
-
"model_module": "@jupyter-widgets/base",
|
985 |
-
"model_module_version": "2.0.0",
|
986 |
-
"model_name": "LayoutModel",
|
987 |
-
"state": {}
|
988 |
-
},
|
989 |
-
"802b81b278a34a1a9ed480ca2ae299a0": {
|
990 |
-
"model_module": "@jupyter-widgets/controls",
|
991 |
-
"model_module_version": "2.0.0",
|
992 |
-
"model_name": "HTMLModel",
|
993 |
-
"state": {
|
994 |
-
"layout": "IPY_MODEL_47fba054bcbc4563934b6d25ea787e43",
|
995 |
-
"style": "IPY_MODEL_cab10a06b0064a4f876d47bbd5dda288",
|
996 |
-
"value": "model.safetensors: 100%"
|
997 |
-
}
|
998 |
-
},
|
999 |
-
"80984aaf16ce41ce839cc4bd5c0ea202": {
|
1000 |
-
"model_module": "@jupyter-widgets/base",
|
1001 |
-
"model_module_version": "2.0.0",
|
1002 |
-
"model_name": "LayoutModel",
|
1003 |
-
"state": {}
|
1004 |
-
},
|
1005 |
-
"87a62c5c11cc43649d6ce177ab39f244": {
|
1006 |
-
"model_module": "@jupyter-widgets/controls",
|
1007 |
-
"model_module_version": "2.0.0",
|
1008 |
-
"model_name": "HTMLStyleModel",
|
1009 |
-
"state": {
|
1010 |
-
"description_width": "",
|
1011 |
-
"font_size": null,
|
1012 |
-
"text_color": null
|
1013 |
-
}
|
1014 |
-
},
|
1015 |
-
"8b033d0c246145a082c43e73d1377035": {
|
1016 |
-
"model_module": "@jupyter-widgets/controls",
|
1017 |
-
"model_module_version": "2.0.0",
|
1018 |
-
"model_name": "HTMLModel",
|
1019 |
-
"state": {
|
1020 |
-
"layout": "IPY_MODEL_5cdf8fe39a634d048f2140b3af85165f",
|
1021 |
-
"style": "IPY_MODEL_87a62c5c11cc43649d6ce177ab39f244",
|
1022 |
-
"value": " 438M/438M [00:15<00:00, 22.9MB/s]"
|
1023 |
-
}
|
1024 |
-
},
|
1025 |
-
"c5eebb3e916e4c59864d29582ab336bf": {
|
1026 |
-
"model_module": "@jupyter-widgets/controls",
|
1027 |
-
"model_module_version": "2.0.0",
|
1028 |
-
"model_name": "ProgressStyleModel",
|
1029 |
-
"state": {
|
1030 |
-
"description_width": ""
|
1031 |
-
}
|
1032 |
-
},
|
1033 |
-
"cab10a06b0064a4f876d47bbd5dda288": {
|
1034 |
-
"model_module": "@jupyter-widgets/controls",
|
1035 |
-
"model_module_version": "2.0.0",
|
1036 |
-
"model_name": "HTMLStyleModel",
|
1037 |
-
"state": {
|
1038 |
-
"description_width": "",
|
1039 |
-
"font_size": null,
|
1040 |
-
"text_color": null
|
1041 |
-
}
|
1042 |
-
},
|
1043 |
-
"d83e79effc3542f49c38928463bb41ec": {
|
1044 |
-
"model_module": "@jupyter-widgets/controls",
|
1045 |
-
"model_module_version": "2.0.0",
|
1046 |
-
"model_name": "FloatProgressModel",
|
1047 |
-
"state": {
|
1048 |
-
"bar_style": "success",
|
1049 |
-
"layout": "IPY_MODEL_6a6b93c568744ed48ba6c58f84c3d59a",
|
1050 |
-
"max": 437977072,
|
1051 |
-
"style": "IPY_MODEL_c5eebb3e916e4c59864d29582ab336bf",
|
1052 |
-
"value": 437977072
|
1053 |
-
}
|
1054 |
-
},
|
1055 |
-
"fbc09ae2c5614831a2fb02fa48a44fd1": {
|
1056 |
-
"model_module": "@jupyter-widgets/controls",
|
1057 |
-
"model_module_version": "2.0.0",
|
1058 |
-
"model_name": "HBoxModel",
|
1059 |
-
"state": {
|
1060 |
-
"children": [
|
1061 |
-
"IPY_MODEL_802b81b278a34a1a9ed480ca2ae299a0",
|
1062 |
-
"IPY_MODEL_d83e79effc3542f49c38928463bb41ec",
|
1063 |
-
"IPY_MODEL_8b033d0c246145a082c43e73d1377035"
|
1064 |
-
],
|
1065 |
-
"layout": "IPY_MODEL_80984aaf16ce41ce839cc4bd5c0ea202"
|
1066 |
-
}
|
1067 |
-
}
|
1068 |
-
},
|
1069 |
"version_major": 2,
|
1070 |
"version_minor": 0
|
1071 |
}
|
|
|
14 |
"id": "73e72549-69f2-46b5-b0f5-655777139972",
|
15 |
"metadata": {
|
16 |
"execution": {
|
17 |
+
"iopub.execute_input": "2025-01-21T19:25:48.302003Z",
|
18 |
+
"iopub.status.busy": "2025-01-21T19:25:48.301808Z",
|
19 |
+
"iopub.status.idle": "2025-01-21T19:25:50.698806Z",
|
20 |
+
"shell.execute_reply": "2025-01-21T19:25:50.698535Z",
|
21 |
+
"shell.execute_reply.started": "2025-01-21T19:25:48.301982Z"
|
22 |
}
|
23 |
},
|
24 |
"outputs": [],
|
|
|
45 |
"id": "07e0787e-c72b-41f3-baba-43cef3f8d6f8",
|
46 |
"metadata": {
|
47 |
"execution": {
|
48 |
+
"iopub.execute_input": "2025-01-21T19:25:50.699344Z",
|
49 |
+
"iopub.status.busy": "2025-01-21T19:25:50.699200Z",
|
50 |
+
"iopub.status.idle": "2025-01-21T19:25:50.701241Z",
|
51 |
+
"shell.execute_reply": "2025-01-21T19:25:50.700993Z",
|
52 |
+
"shell.execute_reply.started": "2025-01-21T19:25:50.699335Z"
|
53 |
}
|
54 |
},
|
55 |
"outputs": [],
|
|
|
71 |
"id": "d4b79fb9-5e70-4600-8885-94bc0a6e917c",
|
72 |
"metadata": {
|
73 |
"execution": {
|
74 |
+
"iopub.execute_input": "2025-01-21T19:25:50.701789Z",
|
75 |
+
"iopub.status.busy": "2025-01-21T19:25:50.701708Z",
|
76 |
+
"iopub.status.idle": "2025-01-21T19:25:50.707095Z",
|
77 |
+
"shell.execute_reply": "2025-01-21T19:25:50.706788Z",
|
78 |
+
"shell.execute_reply.started": "2025-01-21T19:25:50.701781Z"
|
79 |
}
|
80 |
},
|
81 |
"outputs": [],
|
|
|
109 |
" avg_loss = total_loss / len(dataloader)\n",
|
110 |
" avg_acc = total_correct / total_length\n",
|
111 |
" model.train()\n",
|
112 |
+
" return float(avg_loss), float(avg_acc)\n",
|
113 |
"\n",
|
114 |
"\n",
|
115 |
"def print_model_status(epoch, num_epochs, model, train_dataloader, test_dataloader):\n",
|
|
|
117 |
" test_loss, test_acc = model_metrics(model, test_dataloader)\n",
|
118 |
" loss_str = f\"Loss: Train {train_loss:0.3f}, Test {test_loss:0.3f}\"\n",
|
119 |
" acc_str = f\"Acc: Train {train_acc:0.3f}, Test {test_acc:0.3f}\"\n",
|
120 |
+
" my_print(f\"Epoch {epoch+1:2}/{num_epochs} done. {loss_str}; and {acc_str}\")\n",
|
121 |
+
" metrics = dict(\n",
|
122 |
+
" train_loss=train_loss,\n",
|
123 |
+
" train_acc=train_acc,\n",
|
124 |
+
" test_loss=test_loss,\n",
|
125 |
+
" test_acc=test_acc,\n",
|
126 |
+
" )\n",
|
127 |
+
" return metrics\n",
|
128 |
"\n",
|
129 |
"\n",
|
130 |
"class BertClassifier(nn.Module, PyTorchModelHubMixin):\n",
|
|
|
143 |
"\n",
|
144 |
"\n",
|
145 |
"class TextDataset(Dataset):\n",
|
146 |
+
" def __init__(self, texts, labels, tokenizer, max_length=256):\n",
|
147 |
" self.encodings = tokenizer(\n",
|
148 |
" texts,\n",
|
149 |
" truncation=True,\n",
|
|
|
167 |
" criterion = nn.CrossEntropyLoss()\n",
|
168 |
" model.train()\n",
|
169 |
"\n",
|
170 |
+
" _ = print_model_status(-1, num_epochs, model, train_dataloader, test_dataloader)\n",
|
171 |
" for epoch in range(num_epochs):\n",
|
172 |
" total_loss = 0\n",
|
173 |
" for batch in train_dataloader:\n",
|
|
|
185 |
"\n",
|
186 |
" total_loss += loss.item()\n",
|
187 |
" avg_loss = total_loss / len(train_dataloader)\n",
|
188 |
+
" metrics = print_model_status(\n",
|
189 |
+
" epoch, num_epochs, model, train_dataloader, test_dataloader\n",
|
190 |
+
" )\n",
|
191 |
+
" return metrics"
|
192 |
]
|
193 |
},
|
194 |
{
|
|
|
197 |
"id": "07131bce-23ad-4787-8622-cce401f3e5ce",
|
198 |
"metadata": {
|
199 |
"execution": {
|
200 |
+
"iopub.execute_input": "2025-01-21T19:25:50.707655Z",
|
201 |
+
"iopub.status.busy": "2025-01-21T19:25:50.707519Z",
|
202 |
+
"iopub.status.idle": "2025-01-21T19:25:50.718311Z",
|
203 |
+
"shell.execute_reply": "2025-01-21T19:25:50.718037Z",
|
204 |
+
"shell.execute_reply.started": "2025-01-21T19:25:50.707646Z"
|
205 |
}
|
206 |
},
|
207 |
"outputs": [],
|
|
|
221 |
"id": "695bc080-bbd7-4937-af5b-50db1c936500",
|
222 |
"metadata": {
|
223 |
"execution": {
|
224 |
+
"iopub.execute_input": "2025-01-21T19:25:50.718754Z",
|
225 |
+
"iopub.status.busy": "2025-01-21T19:25:50.718677Z",
|
226 |
+
"iopub.status.idle": "2025-01-21T19:25:50.721834Z",
|
227 |
+
"shell.execute_reply": "2025-01-21T19:25:50.721583Z",
|
228 |
+
"shell.execute_reply.started": "2025-01-21T19:25:50.718746Z"
|
229 |
}
|
230 |
},
|
231 |
"outputs": [],
|
|
|
233 |
"def run_training(\n",
|
234 |
" max_dataset_size=16 * 200,\n",
|
235 |
" bert_variety=\"bert-base-uncased\",\n",
|
236 |
+
" max_length=256,\n",
|
237 |
" num_epochs=3,\n",
|
238 |
" batch_size=32,\n",
|
239 |
"):\n",
|
240 |
+
" training_regime = dict(\n",
|
241 |
+
" max_dataset_size=max_dataset_size,\n",
|
242 |
+
" bert_variety=bert_variety,\n",
|
243 |
+
" max_length=max_length,\n",
|
244 |
+
" num_epochs=num_epochs,\n",
|
245 |
+
" batch_size=batch_size,\n",
|
246 |
+
" )\n",
|
247 |
" hf_dataset = load_dataset(\"quotaclimat/frugalaichallenge-text-train\")\n",
|
248 |
" test_size = 0.2\n",
|
249 |
" test_seed = 42\n",
|
|
|
289 |
" text_dataset_test, batch_size=batch_size, shuffle=False\n",
|
290 |
" )\n",
|
291 |
"\n",
|
292 |
+
" metrics = train_model(\n",
|
293 |
+
" model, dataloader_train, dataloader_test, device, num_epochs=num_epochs\n",
|
294 |
+
" )\n",
|
295 |
+
" return model, tokenizer, training_regime, metrics"
|
296 |
]
|
297 |
},
|
298 |
{
|
|
|
321 |
},
|
322 |
{
|
323 |
"cell_type": "code",
|
324 |
+
"execution_count": null,
|
325 |
+
"id": "34a7c310-c486-4db1-b94d-4363c3d3df5b",
|
326 |
"metadata": {
|
327 |
"execution": {
|
328 |
+
"iopub.execute_input": "2025-01-21T19:25:50.724036Z",
|
329 |
+
"iopub.status.busy": "2025-01-21T19:25:50.723968Z"
|
|
|
|
|
|
|
330 |
}
|
331 |
},
|
332 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
"source": [
|
334 |
+
"model, tokenizer, regime, metrics = run_training(\n",
|
335 |
+
" max_dataset_size=16 * 10,\n",
|
336 |
+
" bert_variety=\"google/bert_uncased_L-2_H-128_A-2\",\n",
|
337 |
" max_length=128,\n",
|
338 |
+
" num_epochs=4,\n",
|
339 |
" batch_size=32,\n",
|
340 |
")"
|
341 |
]
|
342 |
},
|
343 |
{
|
344 |
"cell_type": "code",
|
345 |
+
"execution_count": null,
|
346 |
+
"id": "32abaa1b-11f4-4793-97b8-36bb2dc29d56",
|
347 |
+
"metadata": {},
|
348 |
+
"outputs": [],
|
349 |
+
"source": [
|
350 |
+
"regime"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": null,
|
356 |
+
"id": "fe108690-bcc1-4667-9f8e-907a1a8ac2ec",
|
357 |
+
"metadata": {},
|
358 |
+
"outputs": [],
|
359 |
+
"source": [
|
360 |
+
"metrics"
|
361 |
+
]
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"cell_type": "code",
|
365 |
+
"execution_count": null,
|
366 |
"id": "0aedfcca-843e-4f4c-8062-3e4625161bcc",
|
367 |
"metadata": {
|
368 |
+
"editable": true,
|
369 |
+
"slideshow": {
|
370 |
+
"slide_type": ""
|
371 |
+
},
|
372 |
+
"tags": []
|
|
|
|
|
373 |
},
|
374 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
"source": [
|
376 |
"model.eval()\n",
|
377 |
"test_text = [\n",
|
|
|
388 |
" truncation=True,\n",
|
389 |
" padding=True,\n",
|
390 |
" return_tensors=\"pt\",\n",
|
391 |
+
" max_length=256,\n",
|
392 |
")\n",
|
393 |
"\n",
|
394 |
"with torch.no_grad():\n",
|
|
|
408 |
]
|
409 |
},
|
410 |
{
|
411 |
+
"cell_type": "markdown",
|
412 |
+
"id": "6264418d-10ef-4eca-b188-2b6b7f487797",
|
413 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
"source": [
|
415 |
+
"Overall top performance per model. Machine: bert-base is using an Nvidia 1xL40S, no inference time cleaverness attempted.\n",
|
416 |
+
"\n",
|
417 |
+
"[accidentally cheating bert-base by trainging on full dataset](https://huggingface.co/datasets/frugal-ai-challenge/public-leaderboard-text/blob/main/submissions/Nonnormalizable_20250117_220350.json):\\\n",
|
418 |
+
"acc 0.954, energy 0.736 Wh, emissions 0.272 gco2eq\n",
|
419 |
+
"\n",
|
420 |
+
"[bert-base some hp tuning](https://huggingface.co/datasets/frugal-ai-challenge/public-leaderboard-text/blob/main/submissions/Nonnormalizable_20250120_231350.json):\\\n",
|
421 |
+
"acc 0.707, energy 0.803 Wh, emissions 0.296 gco2eq\n"
|
422 |
+
]
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"cell_type": "markdown",
|
426 |
+
"id": "df067c27-9d58-49fc-860d-ba79e5512013",
|
427 |
+
"metadata": {},
|
428 |
+
"source": [
|
429 |
+
"Looking at bert-tiny.\n",
|
430 |
+
"Scanning max_length and batch_size with num_epochs set to 3, looks like we want 256 and 16. That gets us\\\n",
|
431 |
+
"`2025-01-21 10:18:56 Epoch 3/3 done. Loss: Train 1.368, Test 1.432; and Acc: Train 0.499, Test 0.477`.\n",
|
432 |
+
"\n",
|
433 |
+
"Then looking at num_epochs, we saturate test set performance at 15 (~3 min), giving e.g.\\\n",
|
434 |
+
"`2025-01-21 10:38:30 Epoch 15/20 done. Loss: Train 0.553, Test 1.157; and Acc: Train 0.833, Test 0.595`"
|
435 |
]
|
436 |
},
|
437 |
{
|
438 |
"cell_type": "code",
|
439 |
+
"execution_count": 32,
|
440 |
+
"id": "37794952-703c-466c-9d26-ee6cb2834246",
|
441 |
"metadata": {
|
442 |
"execution": {
|
443 |
+
"iopub.execute_input": "2025-01-21T18:35:29.897653Z",
|
444 |
+
"iopub.status.busy": "2025-01-21T18:35:29.897020Z",
|
445 |
+
"iopub.status.idle": "2025-01-21T18:35:29.901748Z",
|
446 |
+
"shell.execute_reply": "2025-01-21T18:35:29.901032Z",
|
447 |
+
"shell.execute_reply.started": "2025-01-21T18:35:29.897609Z"
|
448 |
}
|
449 |
},
|
450 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
"source": [
|
452 |
+
"static_hyperparams = dict(\n",
|
453 |
" max_dataset_size=\"full\",\n",
|
454 |
+
" bert_variety=\"google/bert_uncased_L-2_H-128_A-2\",\n",
|
455 |
+
" max_length=256,\n",
|
|
|
456 |
" batch_size=16,\n",
|
457 |
")"
|
458 |
]
|
459 |
},
|
460 |
{
|
461 |
"cell_type": "code",
|
462 |
+
"execution_count": 34,
|
463 |
"id": "28354e8c-886a-4523-8968-8c688c13f6a3",
|
464 |
"metadata": {
|
465 |
"execution": {
|
466 |
+
"iopub.execute_input": "2025-01-21T18:42:35.614137Z",
|
467 |
+
"iopub.status.busy": "2025-01-21T18:42:35.613694Z",
|
468 |
+
"iopub.status.idle": "2025-01-21T18:45:35.341816Z",
|
469 |
+
"shell.execute_reply": "2025-01-21T18:45:35.341535Z",
|
470 |
+
"shell.execute_reply.started": "2025-01-21T18:42:35.614111Z"
|
471 |
}
|
472 |
},
|
473 |
"outputs": [
|
|
|
475 |
"name": "stdout",
|
476 |
"output_type": "stream",
|
477 |
"text": [
|
478 |
+
"2025-01-21 10:43:44 Epoch 0/15 done. Loss: Train 2.177, Test 2.172; and Acc: Train 0.063, Test 0.071\n",
|
479 |
+
"2025-01-21 10:43:52 Epoch 1/15 done. Loss: Train 1.786, Test 1.823; and Acc: Train 0.383, Test 0.354\n",
|
480 |
+
"2025-01-21 10:44:00 Epoch 2/15 done. Loss: Train 1.579, Test 1.628; and Acc: Train 0.465, Test 0.436\n",
|
481 |
+
"2025-01-21 10:44:07 Epoch 3/15 done. Loss: Train 1.431, Test 1.498; and Acc: Train 0.510, Test 0.484\n",
|
482 |
+
"2025-01-21 10:44:14 Epoch 4/15 done. Loss: Train 1.304, Test 1.402; and Acc: Train 0.555, Test 0.515\n",
|
483 |
+
"2025-01-21 10:44:22 Epoch 5/15 done. Loss: Train 1.212, Test 1.339; and Acc: Train 0.585, Test 0.535\n",
|
484 |
+
"2025-01-21 10:44:29 Epoch 6/15 done. Loss: Train 1.128, Test 1.288; and Acc: Train 0.611, Test 0.546\n",
|
485 |
+
"2025-01-21 10:44:36 Epoch 7/15 done. Loss: Train 1.039, Test 1.241; and Acc: Train 0.643, Test 0.559\n",
|
486 |
+
"2025-01-21 10:44:44 Epoch 8/15 done. Loss: Train 1.003, Test 1.236; and Acc: Train 0.665, Test 0.555\n",
|
487 |
+
"2025-01-21 10:44:51 Epoch 9/15 done. Loss: Train 0.897, Test 1.183; and Acc: Train 0.708, Test 0.568\n",
|
488 |
+
"2025-01-21 10:44:58 Epoch 10/15 done. Loss: Train 0.852, Test 1.187; and Acc: Train 0.724, Test 0.572\n",
|
489 |
+
"2025-01-21 10:45:06 Epoch 11/15 done. Loss: Train 0.769, Test 1.154; and Acc: Train 0.755, Test 0.581\n",
|
490 |
+
"2025-01-21 10:45:13 Epoch 12/15 done. Loss: Train 0.764, Test 1.197; and Acc: Train 0.752, Test 0.573\n",
|
491 |
+
"2025-01-21 10:45:20 Epoch 13/15 done. Loss: Train 0.660, Test 1.153; and Acc: Train 0.797, Test 0.590\n",
|
492 |
+
"2025-01-21 10:45:28 Epoch 14/15 done. Loss: Train 0.588, Test 1.143; and Acc: Train 0.820, Test 0.594\n",
|
493 |
+
"2025-01-21 10:45:35 Epoch 15/15 done. Loss: Train 0.579, Test 1.200; and Acc: Train 0.822, Test 0.575\n"
|
494 |
]
|
495 |
}
|
496 |
],
|
497 |
"source": [
|
498 |
+
"model, tokenizer, training_regime, testing_metrics = run_training(\n",
|
499 |
+
" **static_hyperparams,\n",
|
500 |
+
" num_epochs=15,\n",
|
|
|
|
|
|
|
501 |
")"
|
502 |
]
|
503 |
},
|
|
|
511 |
},
|
512 |
{
|
513 |
"cell_type": "code",
|
514 |
+
"execution_count": 35,
|
515 |
"id": "ec2516f9-79f2-4ae1-ab9a-9a51a7a50587",
|
516 |
"metadata": {
|
517 |
"execution": {
|
518 |
+
"iopub.execute_input": "2025-01-21T18:57:29.278360Z",
|
519 |
+
"iopub.status.busy": "2025-01-21T18:57:29.276985Z",
|
520 |
+
"iopub.status.idle": "2025-01-21T18:57:29.289810Z",
|
521 |
+
"shell.execute_reply": "2025-01-21T18:57:29.288574Z",
|
522 |
+
"shell.execute_reply.started": "2025-01-21T18:57:29.278315Z"
|
523 |
},
|
524 |
"scrolled": true
|
525 |
},
|
526 |
"outputs": [
|
527 |
{
|
528 |
+
"ename": "SyntaxError",
|
529 |
+
"evalue": "invalid syntax. Perhaps you forgot a comma? (3495586751.py, line 4)",
|
530 |
+
"output_type": "error",
|
531 |
+
"traceback": [
|
532 |
+
"\u001b[0;36m Cell \u001b[0;32mIn[35], line 4\u001b[0;36m\u001b[0m\n\u001b[0;31m base_model=static_hyperparams[],\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax. Perhaps you forgot a comma?\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
]
|
534 |
}
|
535 |
],
|
536 |
"source": [
|
537 |
+
"model_and_repo_name = \"frugal-ai-text-bert-tiny\"\n",
|
538 |
"card_data = ModelCardData(\n",
|
539 |
" model_name=model_and_repo_name,\n",
|
540 |
+
" base_model=static_hyperparams[\"bert_variety\"],\n",
|
541 |
" license=\"apache-2.0\",\n",
|
542 |
" language=[\"en\"],\n",
|
543 |
" datasets=[\"QuotaClimat/frugalaichallenge-text-train\"],\n",
|
|
|
625 |
" truncation=True,\n",
|
626 |
" padding=True,\n",
|
627 |
" return_tensors=\"pt\",\n",
|
628 |
+
" max_length=256,\n",
|
629 |
")\n",
|
630 |
"\n",
|
631 |
"with torch.no_grad():\n",
|
|
|
766 |
},
|
767 |
"widgets": {
|
768 |
"application/vnd.jupyter.widget-state+json": {
|
769 |
+
"state": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
770 |
"version_major": 2,
|
771 |
"version_minor": 0
|
772 |
}
|