File size: 6,260 Bytes
effa9d0 4d6e8c2 f146898 effa9d0 74ee339 ab18efc effa9d0 ab18efc 4d6e8c2 effa9d0 4d6e8c2 e680bbf b3f06b6 6c2e610 baebb2a 6c2e610 b3f06b6 1c33274 d11f2f9 ab18efc 6c2e610 f718d63 6c2e610 3ec6adb d11f2f9 b3f06b6 d11f2f9 6c2e610 d11f2f9 a5a3465 d11f2f9 b3f06b6 ab18efc b3f06b6 6c2e610 ab18efc b3f06b6 effa9d0 ab18efc b3f06b6 6c2e610 74ee339 6c2e610 ab18efc b3f06b6 6c2e610 b3f06b6 ab18efc b3f06b6 9b38a9a 250d2de b3f06b6 4d6e8c2 70f5f26 b3f06b6 70f5f26 4d6e8c2 b3f06b6 4d6e8c2 c2b5fae 4d6e8c2 c2b5fae b3f06b6 4d6e8c2 70f5f26 b3f06b6 70f5f26 b3f06b6 6b11a89 cc921f8 b3f06b6 ab18efc b3f06b6 70f5f26 b3f06b6 70f5f26 4d6e8c2 b3f06b6 4d6e8c2 b3f06b6 4d6e8c2 b3f06b6 4d6e8c2 1c33274 4d6e8c2 b3f06b6 4d6e8c2 b3f06b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import random
from datetime import datetime
import os
import numpy as np
import torch
from datasets import load_dataset
from fastapi import APIRouter, Query
from sklearn.metrics import accuracy_score
from torch.utils.data import DataLoader, Dataset
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
from .utils.emissions import clean_emissions_data, get_space_info, tracker
from .utils.evaluation import TextEvaluationRequest
router = APIRouter()
MODEL_TYPE = "bert-mini"
DESCRIPTIONS = {
"baseline": "baseline most common class",
"bert-base": "bert base fine tuned on just training data, Nvidia T4 small",
"bert-medium": "bert medium fine tuned on just training data, Nvidia T4 small",
"bert-small": "bert small fine tuned on just training data, Nvidia T4 small",
"bert-mini": "bert mini fine tuned on just training data, Nvidia T4 small",
"bert-tiny": "bert tiny fine tuned on just training data, Nvidia T4 small",
}
ROUTE = "/text"
class TextDataset(Dataset):
def __init__(self, texts, tokenizer, max_length=256):
self.texts = texts
self.encodings = tokenizer(
texts,
truncation=True,
padding=True,
max_length=max_length,
return_tensors="pt",
)
def __getitem__(self, idx):
item = {key: val[idx] for key, val in self.encodings.items()}
return item
def __len__(self) -> int:
return len(self.texts)
def baseline_model(dataset_length: int):
# Make random predictions (placeholder for actual model inference)
# predictions = [random.randint(0, 7) for _ in range(dataset_length)]
# My favorite baseline is the most common class.
predictions = [0] * dataset_length
return predictions
def bert_model(test_dataset: dict, model_type: str):
print("Starting my code block.")
texts = test_dataset["quote"]
model_repo = f"Nonnormalizable/frugal-ai-text-{model_type}"
print(f"Loading from model_repo: {model_repo}")
config = AutoConfig.from_pretrained(model_repo)
model = AutoModelForSequenceClassification.from_pretrained(model_repo)
tokenizer = AutoTokenizer.from_pretrained(model_repo)
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
print("Using device:", device)
model = model.to(device)
dataset = TextDataset(texts, tokenizer=tokenizer)
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
model.eval()
with torch.no_grad():
print("Starting model run.")
predictions = np.array([])
for batch in dataloader:
test_input_ids = batch["input_ids"].to(device)
test_attention_mask = batch["attention_mask"].to(device)
outputs = model(test_input_ids, test_attention_mask)
p = torch.argmax(outputs.logits, dim=1)
predictions = np.append(predictions, p.cpu().numpy())
print("End of model run.")
print("End of my code block.")
return predictions
@router.post(ROUTE, tags=["Text Task"])
async def evaluate_text(
request: TextEvaluationRequest,
model_type: str = MODEL_TYPE,
# This should be an API query parameter, but it looks like the submission repo
# https://huggingface.co/spaces/frugal-ai-challenge/submission-portal
# is built in a way to not accept any other endpoints or parameters.
):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7,
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# --------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
# --------------------------------------------------------------------------------------------
true_labels = test_dataset["label"]
if model_type == "baseline":
predictions = baseline_model(len(true_labels))
elif model_type[:5] == "bert-":
predictions = bert_model(test_dataset, model_type)
else:
raise ValueError(model_type)
# --------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
# --------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTIONS[model_type],
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed,
},
}
return results
|