File size: 6,260 Bytes
effa9d0
4d6e8c2
f146898
effa9d0
74ee339
ab18efc
effa9d0
 
 
 
ab18efc
4d6e8c2
effa9d0
4d6e8c2
 
 
 
e680bbf
b3f06b6
 
6c2e610
 
 
baebb2a
6c2e610
b3f06b6
1c33274
d11f2f9
ab18efc
6c2e610
 
f718d63
6c2e610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec6adb
d11f2f9
b3f06b6
d11f2f9
6c2e610
d11f2f9
 
a5a3465
d11f2f9
 
b3f06b6
 
ab18efc
 
b3f06b6
6c2e610
ab18efc
 
 
 
 
b3f06b6
effa9d0
 
ab18efc
b3f06b6
6c2e610
74ee339
6c2e610
 
ab18efc
 
b3f06b6
6c2e610
 
 
 
 
 
 
b3f06b6
 
 
ab18efc
 
 
b3f06b6
 
 
9b38a9a
250d2de
 
 
b3f06b6
4d6e8c2
70f5f26
b3f06b6
70f5f26
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
b3f06b6
4d6e8c2
 
 
c2b5fae
4d6e8c2
 
 
 
 
c2b5fae
b3f06b6
4d6e8c2
 
 
70f5f26
b3f06b6
70f5f26
 
b3f06b6
6b11a89
cc921f8
b3f06b6
 
 
 
 
 
ab18efc
b3f06b6
70f5f26
b3f06b6
70f5f26
4d6e8c2
 
b3f06b6
4d6e8c2
 
b3f06b6
4d6e8c2
 
 
 
 
b3f06b6
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
b3f06b6
 
4d6e8c2
b3f06b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import random
from datetime import datetime
import os

import numpy as np
import torch
from datasets import load_dataset
from fastapi import APIRouter, Query
from sklearn.metrics import accuracy_score
from torch.utils.data import DataLoader, Dataset
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer

from .utils.emissions import clean_emissions_data, get_space_info, tracker
from .utils.evaluation import TextEvaluationRequest

router = APIRouter()

MODEL_TYPE = "bert-mini"
DESCRIPTIONS = {
    "baseline": "baseline most common class",
    "bert-base": "bert base fine tuned on just training data, Nvidia T4 small",
    "bert-medium": "bert medium fine tuned on just training data, Nvidia T4 small",
    "bert-small": "bert small fine tuned on just training data, Nvidia T4 small",
    "bert-mini": "bert mini fine tuned on just training data, Nvidia T4 small",
    "bert-tiny": "bert tiny fine tuned on just training data, Nvidia T4 small",
}
ROUTE = "/text"


class TextDataset(Dataset):
    def __init__(self, texts, tokenizer, max_length=256):
        self.texts = texts
        self.encodings = tokenizer(
            texts,
            truncation=True,
            padding=True,
            max_length=max_length,
            return_tensors="pt",
        )

    def __getitem__(self, idx):
        item = {key: val[idx] for key, val in self.encodings.items()}
        return item

    def __len__(self) -> int:
        return len(self.texts)


def baseline_model(dataset_length: int):
    # Make random predictions (placeholder for actual model inference)
    # predictions = [random.randint(0, 7) for _ in range(dataset_length)]

    # My favorite baseline is the most common class.
    predictions = [0] * dataset_length

    return predictions


def bert_model(test_dataset: dict, model_type: str):
    print("Starting my code block.")
    texts = test_dataset["quote"]

    model_repo = f"Nonnormalizable/frugal-ai-text-{model_type}"
    print(f"Loading from model_repo: {model_repo}")
    config = AutoConfig.from_pretrained(model_repo)
    model = AutoModelForSequenceClassification.from_pretrained(model_repo)
    tokenizer = AutoTokenizer.from_pretrained(model_repo)

    if torch.cuda.is_available():
        device = torch.device("cuda")
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")
    print("Using device:", device)
    model = model.to(device)
    dataset = TextDataset(texts, tokenizer=tokenizer)
    dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
    model.eval()
    with torch.no_grad():
        print("Starting model run.")
        predictions = np.array([])
        for batch in dataloader:
            test_input_ids = batch["input_ids"].to(device)
            test_attention_mask = batch["attention_mask"].to(device)
            outputs = model(test_input_ids, test_attention_mask)
            p = torch.argmax(outputs.logits, dim=1)
            predictions = np.append(predictions, p.cpu().numpy())
        print("End of model run.")

    print("End of my code block.")
    return predictions


@router.post(ROUTE, tags=["Text Task"])
async def evaluate_text(
    request: TextEvaluationRequest,
    model_type: str = MODEL_TYPE,
    # This should be an API query parameter, but it looks like the submission repo
    # https://huggingface.co/spaces/frugal-ai-challenge/submission-portal
    # is built in a way to not accept any other endpoints or parameters.
):
    """
    Evaluate text classification for climate disinformation detection.

    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7,
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    test_dataset = dataset["test"]

    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    # --------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    # --------------------------------------------------------------------------------------------

    true_labels = test_dataset["label"]
    if model_type == "baseline":
        predictions = baseline_model(len(true_labels))
    elif model_type[:5] == "bert-":
        predictions = bert_model(test_dataset, model_type)
    else:
        raise ValueError(model_type)

    # --------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    # --------------------------------------------------------------------------------------------

    # Stop tracking emissions
    emissions_data = tracker.stop_task()

    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)

    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTIONS[model_type],
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed,
        },
    }

    return results