Update tasks/text.py
Browse files- tasks/text.py +43 -20
tasks/text.py
CHANGED
@@ -3,15 +3,20 @@ from datetime import datetime
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
-
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
import numpy as np
|
11 |
|
|
|
12 |
router = APIRouter()
|
13 |
|
14 |
-
DESCRIPTION = "
|
15 |
ROUTE = "/text"
|
16 |
|
17 |
@router.post(ROUTE, tags=["Text Task"],
|
@@ -46,8 +51,8 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
46 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
47 |
|
48 |
# Split dataset
|
49 |
-
train_test = dataset["train"]
|
50 |
-
test_dataset =
|
51 |
|
52 |
# Start tracking emissions
|
53 |
tracker.start()
|
@@ -61,32 +66,50 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
61 |
# Make random predictions (placeholder for actual model inference)
|
62 |
true_labels = test_dataset["label"]
|
63 |
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
73 |
def preprocess_function(df):
|
74 |
return tokenizer(df["quote"], truncation=True)
|
75 |
tokenized_test = test_dataset.map(preprocess_function, batched=True)
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
trainer = Trainer(
|
82 |
model=model,
|
83 |
-
args=training_args,
|
84 |
tokenizer=tokenizer
|
85 |
)
|
86 |
-
|
87 |
-
## prediction
|
88 |
preds = trainer.predict(tokenized_test)
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
predictions = np.array([np.argmax(x) for x in preds[0]])
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# Stop tracking emissions
|
92 |
emissions_data = tracker.stop_task()
|
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
+
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
+
|
10 |
+
from peft import PeftModel
|
11 |
+
from transformers import AutoTokenizer,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding, BitsAndBytesConfig
|
12 |
+
from datasets import Dataset
|
13 |
+
import torch
|
14 |
import numpy as np
|
15 |
|
16 |
+
|
17 |
router = APIRouter()
|
18 |
|
19 |
+
DESCRIPTION = "qwen_finetuned"
|
20 |
ROUTE = "/text"
|
21 |
|
22 |
@router.post(ROUTE, tags=["Text Task"],
|
|
|
51 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
52 |
|
53 |
# Split dataset
|
54 |
+
train_test = dataset["train"]
|
55 |
+
test_dataset = dataset["test"]
|
56 |
|
57 |
# Start tracking emissions
|
58 |
tracker.start()
|
|
|
66 |
# Make random predictions (placeholder for actual model inference)
|
67 |
true_labels = test_dataset["label"]
|
68 |
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
69 |
+
path_adapter = 'MatthiasPicard/Qwen3B_model_test'
|
70 |
+
path_model = "Qwen/Qwen2.5-3B-Instruct"
|
71 |
|
72 |
+
bnb_config = BitsAndBytesConfig(
|
73 |
+
load_in_8bit=True
|
74 |
+
)
|
75 |
+
|
76 |
+
base_model = AutoModelForSequenceClassification.from_pretrained(
|
77 |
+
path_model,
|
78 |
+
num_labels=len(LABEL_MAPPING),
|
79 |
+
device_map="auto",
|
80 |
+
torch_dtype=torch.bfloat16,
|
81 |
+
quantization_config=bnb_config
|
82 |
+
)
|
83 |
|
84 |
+
model = PeftModel.from_pretrained(base_model, path_adapter)
|
85 |
+
model.eval()
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(path_model)
|
87 |
+
|
88 |
def preprocess_function(df):
|
89 |
return tokenizer(df["quote"], truncation=True)
|
90 |
tokenized_test = test_dataset.map(preprocess_function, batched=True)
|
91 |
+
|
92 |
+
# training_args = torch.load("training_args.bin")
|
93 |
+
# training_args.eval_strategy='no'
|
94 |
+
|
|
|
95 |
trainer = Trainer(
|
96 |
model=model,
|
|
|
97 |
tokenizer=tokenizer
|
98 |
)
|
99 |
+
|
|
|
100 |
preds = trainer.predict(tokenized_test)
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
# Run inference
|
105 |
+
# predictions = predict(tokenized_test)
|
106 |
+
# print(predictions)
|
107 |
predictions = np.array([np.argmax(x) for x in preds[0]])
|
108 |
+
|
109 |
+
#--------------------------------------------------------------------------------------------
|
110 |
+
# YOUR MODEL INFERENCE STOPS HERE
|
111 |
+
#--------------------------------------------------------------------------------------------
|
112 |
+
|
113 |
|
114 |
# Stop tracking emissions
|
115 |
emissions_data = tracker.stop_task()
|