TheoLvs commited on
Commit
eaf8780
·
verified ·
1 Parent(s): 17f802c

Update tasks/text.py

Browse files
Files changed (1) hide show
  1. tasks/text.py +11 -11
tasks/text.py CHANGED
@@ -45,24 +45,14 @@ async def evaluate_text(request: TextEvaluationRequest):
45
  }
46
 
47
  # Load and prepare the dataset
48
- dataset = load_dataset(request.dataset_name)
49
 
50
  # Convert string labels to integers
51
  dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
52
 
53
  # Split dataset
54
- train_test = dataset["train"]
55
  test_dataset = dataset["test"]
56
-
57
- # Start tracking emissions
58
- tracker.start()
59
- tracker.start_task("inference")
60
 
61
- #--------------------------------------------------------------------------------------------
62
- # YOUR MODEL INFERENCE CODE HERE
63
- # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
64
- #--------------------------------------------------------------------------------------------
65
-
66
  # Make random predictions (placeholder for actual model inference)
67
  true_labels = test_dataset["label"]
68
  predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
@@ -84,6 +74,16 @@ async def evaluate_text(request: TextEvaluationRequest):
84
  model = PeftModel.from_pretrained(base_model, path_adapter)
85
  model.eval()
86
  tokenizer = AutoTokenizer.from_pretrained(path_model)
 
 
 
 
 
 
 
 
 
 
87
  tokenizer.pad_token = tokenizer.eos_token # Or any other token depending on your model
88
  tokenizer.pad_token_id = tokenizer.eos_token_id
89
 
 
45
  }
46
 
47
  # Load and prepare the dataset
48
+ dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
49
 
50
  # Convert string labels to integers
51
  dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
52
 
53
  # Split dataset
 
54
  test_dataset = dataset["test"]
 
 
 
 
55
 
 
 
 
 
 
56
  # Make random predictions (placeholder for actual model inference)
57
  true_labels = test_dataset["label"]
58
  predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
 
74
  model = PeftModel.from_pretrained(base_model, path_adapter)
75
  model.eval()
76
  tokenizer = AutoTokenizer.from_pretrained(path_model)
77
+
78
+ # Start tracking emissions
79
+ tracker.start()
80
+ tracker.start_task("inference")
81
+
82
+ #--------------------------------------------------------------------------------------------
83
+ # YOUR MODEL INFERENCE CODE HERE
84
+ # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
85
+ #--------------------------------------------------------------------------------------------
86
+
87
  tokenizer.pad_token = tokenizer.eos_token # Or any other token depending on your model
88
  tokenizer.pad_token_id = tokenizer.eos_token_id
89