Update tasks/text.py
Browse files- tasks/text.py +7 -6
tasks/text.py
CHANGED
@@ -66,7 +66,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
66 |
# Make random predictions (placeholder for actual model inference)
|
67 |
true_labels = test_dataset["label"]
|
68 |
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
69 |
-
path_adapter = '
|
70 |
path_model = "Qwen/Qwen2.5-3B-Instruct"
|
71 |
|
72 |
bnb_config = BitsAndBytesConfig(
|
@@ -93,15 +93,16 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
93 |
def preprocess_function(df):
|
94 |
return tokenizer(df["quote"], truncation=True)
|
95 |
tokenized_test = test_dataset.map(preprocess_function, batched=True)
|
96 |
-
|
97 |
-
|
98 |
-
# training_args.eval_strategy='no'
|
99 |
|
100 |
trainer = Trainer(
|
101 |
model=model,
|
102 |
-
tokenizer=tokenizer
|
|
|
103 |
)
|
104 |
-
|
|
|
105 |
preds = trainer.predict(tokenized_test)
|
106 |
|
107 |
|
|
|
66 |
# Make random predictions (placeholder for actual model inference)
|
67 |
true_labels = test_dataset["label"]
|
68 |
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
69 |
+
path_adapter = 'MatthiasPicard/Qwen_test'
|
70 |
path_model = "Qwen/Qwen2.5-3B-Instruct"
|
71 |
|
72 |
bnb_config = BitsAndBytesConfig(
|
|
|
93 |
def preprocess_function(df):
|
94 |
return tokenizer(df["quote"], truncation=True)
|
95 |
tokenized_test = test_dataset.map(preprocess_function, batched=True)
|
96 |
+
|
97 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
|
98 |
|
99 |
trainer = Trainer(
|
100 |
model=model,
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
data_collator=data_collator,
|
103 |
)
|
104 |
+
|
105 |
+
per_device_eval_batch_size=8
|
106 |
preds = trainer.predict(tokenized_test)
|
107 |
|
108 |
|