Update tasks/text.py
Browse files- tasks/text.py +4 -4
tasks/text.py
CHANGED
@@ -65,7 +65,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
65 |
# Make random predictions (placeholder for actual model inference)
|
66 |
true_labels = test_dataset["label"]
|
67 |
# predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
68 |
-
path_model = 'MatthiasPi/
|
69 |
path_tokenizer = "answerdotai/ModernBERT-base"
|
70 |
|
71 |
model = AutoModelForSequenceClassification.from_pretrained(path_model)
|
@@ -75,12 +75,12 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
75 |
return tokenizer(df["quote"], truncation=True)
|
76 |
tokenized_test = test_dataset.map(preprocess_function, batched=True)
|
77 |
|
78 |
-
training_args = torch.load("training_args.bin")
|
79 |
-
training_args.eval_strategy='no'
|
80 |
|
81 |
trainer = Trainer(
|
82 |
model=model,
|
83 |
-
args=training_args,
|
84 |
tokenizer=tokenizer
|
85 |
)
|
86 |
|
|
|
65 |
# Make random predictions (placeholder for actual model inference)
|
66 |
true_labels = test_dataset["label"]
|
67 |
# predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
68 |
+
path_model = 'MatthiasPi/ModernBERT-cards-persona'
|
69 |
path_tokenizer = "answerdotai/ModernBERT-base"
|
70 |
|
71 |
model = AutoModelForSequenceClassification.from_pretrained(path_model)
|
|
|
75 |
return tokenizer(df["quote"], truncation=True)
|
76 |
tokenized_test = test_dataset.map(preprocess_function, batched=True)
|
77 |
|
78 |
+
# training_args = torch.load("training_args.bin")
|
79 |
+
# training_args.eval_strategy='no'
|
80 |
|
81 |
trainer = Trainer(
|
82 |
model=model,
|
83 |
+
# args=training_args,
|
84 |
tokenizer=tokenizer
|
85 |
)
|
86 |
|