File size: 5,776 Bytes
4d6e8c2
 
 
 
 
 
 
 
 
ca9b1e7
 
 
 
 
 
4d6e8c2
 
70467a6
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb4396
 
4d6e8c2
 
 
 
70f5f26
 
 
 
 
4d6e8c2
 
ca9b1e7
e62e3eb
84167fd
e62e3eb
e39064f
e62e3eb
 
e39064f
e62e3eb
1ab9627
 
e39064f
e62e3eb
 
e39064f
e62e3eb
 
 
 
 
e39064f
be34aad
bd6fbf6
e62e3eb
e39064f
e62e3eb
 
22b1a98
e62e3eb
 
 
1f45c21
e62e3eb
22b1a98
e62e3eb
 
 
e39064f
e62e3eb
22b1a98
e62e3eb
 
 
 
 
e39064f
 
e62e3eb
 
 
 
 
 
 
 
e39064f
 
e62e3eb
 
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from transformers import AutoTokenizer,BertForSequenceClassification,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding
from datasets import Dataset
import torch
import numpy as np


router = APIRouter()

DESCRIPTION = "modernBERT_finetuned"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    true_labels = test_dataset["label"]
    predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
    path_model = 'MatthiasPicard/checkpoint4200_batch16_modern_bert_valloss_0.79_0.74acc'
    path_tokenizer = "answerdotai/ModernBERT-base"
    
    model = AutoModelForSequenceClassification.from_pretrained(path_model)
    tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)
    
    def preprocess_function(df):
        return tokenizer(df["quote"], truncation=True,padding='longest')
    tokenized_test = test_dataset.map(preprocess_function, batched=True)
     
    # training_args = torch.load("training_args.bin")
    # training_args.eval_strategy='no'
     
    trainer = Trainer(
        model=model,
        # args=training_args,
        tokenizer=tokenizer
    )
    
    trainer.args.per_device_eval_batch_size = 4
    
    preds = trainer.predict(tokenized_test)
    
    # path_model = 'MatthiasPi/modernbert_finetunedV1'
    # path_tokenizer = "answerdotai/ModernBERT-base"
    
    # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # model = AutoModelForSequenceClassification.from_pretrained(path_model).to(device).eval()
    # tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)

    # model.half()
    
    # # Use optimized tokenization
    # def preprocess_function(df):
    #     return tokenizer(df["quote"], truncation=True, padding="max_length")

    # tokenized_test = test_dataset.map(preprocess_function, batched=True)
    
    # # Convert dataset to PyTorch tensors for efficient inference
    # def collate_fn(batch):
    #     input_ids = torch.tensor([example["input_ids"] for example in batch]).to(device)
    #     attention_mask = torch.tensor([example["attention_mask"] for example in batch]).to(device)
    #     return {"input_ids": input_ids, "attention_mask": attention_mask}
    
    # Optimized inference function
    # def predict(dataset, batch_size=16):
    #     all_preds = []
    #     with torch.no_grad():  # No gradient computation (saves energy)
    #         for batch in torch.utils.data.DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn):
    #             outputs = model(**batch)
    #             preds = torch.argmax(outputs.logits, dim=-1).cpu().numpy()
    #             all_preds.extend(preds)
    #     return np.array(all_preds)
    
    # Run inference
    # predictions = predict(tokenized_test)
    # print(predictions)
    predictions = np.array([np.argmax(x) for x in preds[0]])

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results