|
from fastapi import APIRouter |
|
from datetime import datetime |
|
from datasets import load_dataset |
|
from sklearn.metrics import accuracy_score |
|
import random |
|
|
|
from .utils.evaluation import TextEvaluationRequest |
|
from .utils.emissions import tracker, clean_emissions_data, get_space_info |
|
|
|
router = APIRouter() |
|
|
|
DESCRIPTION = "Random Baseline" |
|
ROUTE = "/text" |
|
|
|
@router.post(ROUTE, tags=["Text Task"], |
|
description=DESCRIPTION) |
|
async def evaluate_text(request: TextEvaluationRequest): |
|
""" |
|
Evaluate text classification for climate disinformation detection. |
|
|
|
Current Model: Random Baseline |
|
- Makes random predictions from the label space (0-7) |
|
- Used as a baseline for comparison |
|
""" |
|
|
|
username, space_url = get_space_info() |
|
|
|
|
|
LABEL_MAPPING = { |
|
"0_not_relevant": 0, |
|
"1_not_happening": 1, |
|
"2_not_human": 2, |
|
"3_not_bad": 3, |
|
"4_solutions_harmful_unnecessary": 4, |
|
"5_science_unreliable": 5, |
|
"6_proponents_biased": 6, |
|
"7_fossil_fuels_needed": 7 |
|
} |
|
|
|
|
|
dataset = load_dataset(request.dataset_name) |
|
|
|
|
|
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) |
|
|
|
|
|
train_test = dataset["train"] |
|
test_dataset = dataset["test"] |
|
|
|
|
|
tracker.start() |
|
tracker.start_task("inference") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import DistilBertTokenizer |
|
import numpy as np |
|
import onnxruntime as ort |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
MODEL_REPO = "ClimateDebunk/Quantized_DistilBertForSequenceClassification" |
|
MODEL_FILENAME = "distilbert_quantized_dynamic.onnx" |
|
MODEL_PATH = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME) |
|
|
|
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") |
|
ort_session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"]) |
|
|
|
|
|
def preprocess(texts): |
|
return tokenizer( |
|
texts, |
|
padding=True, |
|
truncation=True, |
|
max_length=365, |
|
return_tensors="np" |
|
) |
|
|
|
|
|
def predict(texts): |
|
inputs = preprocess(texts) |
|
ort_inputs = { |
|
"input_ids": inputs["input_ids"].astype(np.int64), |
|
"attention_mask": inputs["attention_mask"].astype(np.int64) |
|
} |
|
ort_outputs = ort_session.run(None, ort_inputs) |
|
logits = ort_outputs[0] |
|
predictions = np.argmax(logits, axis=1) |
|
return predictions |
|
|
|
|
|
texts = test_dataset["text"] |
|
predictions = predict(texts) |
|
|
|
true_labels = test_dataset["label"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
|
|
accuracy = accuracy_score(true_labels, predictions) |
|
|
|
|
|
results = { |
|
"username": username, |
|
"space_url": space_url, |
|
"submission_timestamp": datetime.now().isoformat(), |
|
"model_description": DESCRIPTION, |
|
"accuracy": float(accuracy), |
|
"energy_consumed_wh": emissions_data.energy_consumed * 1000, |
|
"emissions_gco2eq": emissions_data.emissions * 1000, |
|
"emissions_data": clean_emissions_data(emissions_data), |
|
"api_route": ROUTE, |
|
"dataset_config": { |
|
"dataset_name": request.dataset_name, |
|
"test_size": request.test_size, |
|
"test_seed": request.test_seed |
|
} |
|
} |
|
|
|
return results |