File size: 6,165 Bytes
4d6e8c2 70f5f26 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 76fccaf 4d6e8c2 70f5f26 4d6e8c2 bf8c867 bc7edfa 4a96b36 843b402 bc7edfa e740326 9e73d63 4a96b36 bc7edfa 4a96b36 8afdb60 4a96b36 bc7edfa 4a96b36 bc7edfa 4a96b36 bc7edfa 4a96b36 bf8c867 4a96b36 bc7edfa 4a96b36 bc7edfa 4a96b36 e740326 4a96b36 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
#true_labels = test_dataset["label"]
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
from torch.utils.data import DataLoader
# Load model and tokenizer from Hugging Face Hub
MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass"
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=True)
MAX_LENGTH = 365
model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
#model.eval() # Set to evaluation mode
class QuotesDataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx], dtype=torch.long)
return item
def __len__(self):
return len(self.labels)
def encode_data(tokenizer, texts, labels, max_length):
try:
if isinstance(texts, pd.Series):
texts = texts.tolist()
if isinstance(labels, pd.Series):
labels = labels.tolist()
encodings = tokenizer(texts, truncation=True, padding='max_length', max_length=max_length, return_tensors='pt')
return QuotesDataset(encodings, labels)
except Exception as e:
print(f"Error during tokenization: {e}")
return None
val_dataset = encode_data(tokenizer, test_dataset['quote'], test_dataset['label'], MAX_LENGTH)
val_loader = DataLoader(val_dataset, batch_size= batch_size, shuffle=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
def validate_model(model, val_loader, device):
model.eval()
predictions = []
with torch.no_grad():
for batch in val_loader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
preds = torch.argmax(outputs.logits, dim=-1)
predictions.extend(preds.cpu().numpy())
return predictions
# tokenize texts
#test_encodings = tokenizer(test_dataset["quote"], padding='max_length', truncation=True, max_length=MAX_LENGTH, return_tensors="pt")
#test_labels = torch.tensor(test_dataset["label"])
#test_dataset = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels)
#test_loader = DataLoader(test_dataset, batch_size=16)
#predictions = []
#with torch.no_grad():
#for batch in test_loader:
# input_ids, attention_mask, labels = [x.to(device) for x in batch]
# outputs = model(input_ids, attention_mask=attention_mask)
# predictions = torch.argmax(outputs.logits, dim=1)
predictions = validate_model(model, val_loader, device)
true_labels = test_dataset["label"]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |