File size: 6,165 Bytes
4d6e8c2
 
 
 
 
 
 
 
 
 
 
70f5f26
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76fccaf
 
4d6e8c2
 
 
 
70f5f26
 
 
 
 
4d6e8c2
 
bf8c867
 
 
bc7edfa
 
4a96b36
843b402
bc7edfa
 
e740326
9e73d63
4a96b36
 
bc7edfa
4a96b36
8afdb60
4a96b36
 
 
 
 
 
 
 
 
bc7edfa
4a96b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc7edfa
4a96b36
 
 
bc7edfa
4a96b36
 
 
 
 
bf8c867
4a96b36
bc7edfa
4a96b36
 
 
 
 
 
bc7edfa
4a96b36
 
 
 
 
 
 
 
e740326
4a96b36
70f5f26
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    #true_labels = test_dataset["label"]
    #predictions = [random.randint(0, 7) for _ in range(len(true_labels))]

    from transformers import AutoModelForSequenceClassification, AutoTokenizer
    import torch
    from torch.utils.data import DataLoader
  
    # Load model and tokenizer from Hugging Face Hub
    MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass"

    tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=True)
    MAX_LENGTH = 365

    model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
    #model.eval()  # Set to evaluation mode

    class QuotesDataset(Dataset):
        def __init__(self, encodings, labels):
            self.encodings = encodings
            self.labels = labels
    
        def __getitem__(self, idx):
            item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
            item['labels'] = torch.tensor(self.labels[idx], dtype=torch.long)
            return item
    
        def __len__(self):
            return len(self.labels)

    def encode_data(tokenizer, texts, labels, max_length):
        try:
            if isinstance(texts, pd.Series):
                texts = texts.tolist()
            if isinstance(labels, pd.Series):
                labels = labels.tolist()
                
            encodings = tokenizer(texts, truncation=True, padding='max_length', max_length=max_length, return_tensors='pt')
            return QuotesDataset(encodings, labels)
    
        except Exception as e:
            print(f"Error during tokenization: {e}")
            return None
            
    val_dataset = encode_data(tokenizer, test_dataset['quote'], test_dataset['label'], MAX_LENGTH)        
    val_loader = DataLoader(val_dataset, batch_size= batch_size, shuffle=False) 
  

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    
    def validate_model(model, val_loader, device):
        model.eval()
        predictions = []
        with torch.no_grad():
            for batch in val_loader:
                batch = {k: v.to(device) for k, v in batch.items()}
                outputs = model(**batch)
                preds = torch.argmax(outputs.logits, dim=-1)
                predictions.extend(preds.cpu().numpy())
        return predictions

    
    # tokenize texts
    #test_encodings = tokenizer(test_dataset["quote"], padding='max_length', truncation=True, max_length=MAX_LENGTH, return_tensors="pt")
    #test_labels = torch.tensor(test_dataset["label"])

    #test_dataset = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels)
    #test_loader = DataLoader(test_dataset, batch_size=16)
    
    #predictions = []
    #with torch.no_grad():
    #for batch in test_loader:
    #    input_ids, attention_mask, labels = [x.to(device) for x in batch]
    #    outputs = model(input_ids, attention_mask=attention_mask)
    #   predictions = torch.argmax(outputs.logits, dim=1)

    predictions = validate_model(model, val_loader, device)
    true_labels = test_dataset["label"]

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results