image-vhuard / tasks /image.py
TheoLvs's picture
Update tasks/image.py
21ae3e2 verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score
import random
import os
from ultralytics import YOLO
from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = f"MountAIn Small model 640"
ROUTE = "/image"
def parse_boxes(annotation_string):
"""Parse multiple boxes from a single annotation string.
Each box has 5 values: class_id, x_center, y_center, width, height"""
values = [float(x) for x in annotation_string.strip().split()]
boxes = []
# Each box has 5 values
for i in range(0, len(values), 5):
if i + 5 <= len(values):
# Skip class_id (first value) and take the next 4 values
box = values[i+1:i+5]
boxes.append(box)
return boxes
def compute_iou(box1, box2):
"""Compute Intersection over Union (IoU) between two YOLO format boxes."""
# Convert YOLO format (x_center, y_center, width, height) to corners
def yolo_to_corners(box):
x_center, y_center, width, height = box
x1 = x_center - width/2
y1 = y_center - height/2
x2 = x_center + width/2
y2 = y_center + height/2
return np.array([x1, y1, x2, y2])
box1_corners = yolo_to_corners(box1)
box2_corners = yolo_to_corners(box2)
# Calculate intersection
x1 = max(box1_corners[0], box2_corners[0])
y1 = max(box1_corners[1], box2_corners[1])
x2 = min(box1_corners[2], box2_corners[2])
y2 = min(box1_corners[3], box2_corners[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
# Calculate union
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
union = box1_area + box2_area - intersection
return intersection / (union + 1e-6)
def compute_max_iou(true_boxes, pred_box):
"""Compute maximum IoU between a predicted box and all true boxes"""
max_iou = 0
for true_box in true_boxes:
iou = compute_iou(true_box, pred_box)
max_iou = max(max_iou, iou)
return max_iou
def load_model(path_to_model, model_type="YOLO"):
if model_type == "YOLO":
model = YOLO(path_to_model)
else:
raise NotImplementedError
return model
def get_boxes_list(predictions):
return [box.tolist() for box in predictions.boxes.xywhn]
@router.post(ROUTE, tags=["Image Task"],
description=DESCRIPTION)
async def evaluate_image(request: ImageEvaluationRequest):
"""
Evaluate image classification and object detection for forest fire smoke.
Current Model: Random Baseline
- Makes random predictions for both classification and bounding boxes
- Used as a baseline for comparison
Metrics:
- Classification accuracy: Whether an image contains smoke or not
- Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
"""
# Get space info
username, space_url = get_space_info()
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Split dataset
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline with your model inference
#--------------------------------------------------------------------------------------------
PATH_TO_MODEL = f"models/best-mountain-s.pt"
model = load_model(PATH_TO_MODEL)
print(f"Model info: {model.info()}")
predictions = []
true_labels = []
pred_boxes = []
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
n_examples = len(test_dataset)
for i, example in enumerate(test_dataset):
print(f"Running {i+1} of {n_examples}")
# Parse true annotation (YOLO format: class_id x_center y_center width height)
annotation = example.get("annotations", "").strip()
has_smoke = len(annotation) > 0
true_labels.append(int(has_smoke))
# Make model prediction
model_preds = model(example['image'])[0]
pred_has_smoke = len(model_preds) > 0
predictions.append(int(pred_has_smoke))
# If there's a true box, parse it and make random box prediction
if has_smoke:
# Parse all true boxes from the annotation
image_true_boxes = parse_boxes(annotation)
true_boxes_list.append(image_true_boxes)
try:
pred_box_list = get_boxes_list(model_preds)[0] # With one bbox to start with (as in the random baseline)
except:
print("No boxes found")
pred_box_list = [0, 0, 0, 0] # Hacky way to make sure that compute_max_iou doesn't fail
pred_boxes.append(pred_box_list)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate classification metrics
classification_accuracy = accuracy_score(true_labels, predictions)
classification_precision = precision_score(true_labels, predictions)
classification_recall = recall_score(true_labels, predictions)
# Calculate mean IoU for object detection (only for images with smoke)
# For each image, we compute the max IoU between the predicted box and all true boxes
ious = []
for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
max_iou = compute_max_iou(true_boxes, pred_box)
ious.append(max_iou)
mean_iou = float(np.mean(ious)) if ious else 0.0
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"classification_accuracy": float(classification_accuracy),
"classification_precision": float(classification_precision),
"classification_recall": float(classification_recall),
"mean_iou": mean_iou,
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results