Spaces:
Sleeping
Sleeping
File size: 12,148 Bytes
4d6e8c2 3b09640 be5011a 3b09640 ca9f528 78f1a97 ca9f528 efb89bf f491cd6 3b09640 4d6e8c2 f491cd6 1c33274 70f5f26 88bb0df f491cd6 3741946 88bb0df cd9b6a5 f491cd6 be5011a d39874c 78f1a97 de2943e 78f1a97 de2943e 78f1a97 de2943e ca9f528 f82759b f491cd6 f7ad336 3b09640 1c33274 70f5f26 4d6e8c2 3b09640 70f5f26 3b09640 70f5f26 3b09640 4d6e8c2 3b09640 4d6e8c2 3b09640 ca9f528 3b09640 13984e6 f491cd6 3b09640 9fff4f7 78f1a97 e67b095 ca9f528 3b09640 be5011a de2943e ada3b45 ca9f528 d39874c ca9f528 de2943e ca9f528 de2943e ca9f528 de2943e ca9f528 be5011a ca9f528 4b9ac2a ca9f528 4b9ac2a ca9f528 4b9ac2a ca9f528 4b9ac2a ca9f528 f7ad336 ca9f528 4b9ac2a ca9f528 f491cd6 be5011a ca9f528 f491cd6 ca9f528 be5011a ca9f528 f491cd6 3b09640 be5011a 3b09640 4d6e8c2 3b09640 70f5f26 3b09640 4d6e8c2 70f5f26 4d6e8c2 3b09640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score
import random
import os
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from PIL import Image
import torch
from ultralytics import YOLO
from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
import os
import torch
import numpy as np
from PIL import Image
from transformers import MobileViTImageProcessor, MobileViTForSemanticSegmentation
import cv2
from tqdm import tqdm
from torch.utils.data import DataLoader
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Mobile-ViT Smoke Detection"
ROUTE = "/image"
device = "cpu"
model_path = "mobilevit_segmentation_full_data.pth"
feature_extractor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small").to(device)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
class SmokeDataset(torch.utils.data.Dataset):
def __init__(self, dataset, feature_extractor, target_size=(224, 224)):
self.dataset = dataset
self.feature_extractor = feature_extractor
self.target_size = target_size
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
example = self.dataset[idx]
image = example["image"]
annotation = example.get("annotations", "").strip()
# Ensure image is resized to a fixed target size using PIL
if isinstance(image, torch.Tensor):
image = Image.fromarray(image.numpy())
resized_image = image.resize(self.target_size, Image.ANTIALIAS)
# Process image using feature extractor
features = self.feature_extractor(images=resized_image, return_tensors="pt").pixel_values
return features.squeeze(0), annotation
def collate_fn(batch):
images, annotations = zip(*batch)
images = torch.stack(images) # Ensure batch has uniform shape
return images, annotations
def preprocess(image):
# Ensure input image is resized to a fixed size (512, 512)
image = image.resize((512, 512))
# Convert to NumPy and ensure BGR normalization
image = np.array(image)[:, :, ::-1] # Convert RGB to BGR
image = np.array(image, dtype=np.float32) / 255.0
# Return as a PIL Image for feature extractor compatibility
return Image.fromarray((image * 255).astype(np.uint8))
def preprocess_batch(images):
"""
Preprocess a batch of images for MobileViT inference.
Resize to a fixed size (512, 512) and return as PIL Images.
"""
preprocessed_images = []
for image in images:
resized_image = image.resize((512, 512))
image_array = np.array(resized_image)[:, :, ::-1] # Convert RGB to BGR
image_float = np.array(image_array, dtype=np.float32) / 255.0
processed_image = Image.fromarray((image_float * 255).astype(np.uint8))
preprocessed_images.append(processed_image)
return preprocessed_images
def get_bounding_boxes_from_mask(mask):
"""Extract bounding boxes from a binary mask."""
pred_boxes = []
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
if len(contour) > 5: # Ignore small/noisy contours
x, y, w, h = cv2.boundingRect(contour)
pred_boxes.append((x, y, x + w, y + h))
return pred_boxes
def parse_boxes(annotation_string):
"""Parse multiple boxes from a single annotation string.
Each box has 5 values: class_id, x_center, y_center, width, height"""
values = [float(x) for x in annotation_string.strip().split()]
boxes = []
# Each box has 5 values
for i in range(0, len(values), 5):
if i + 5 <= len(values):
# Skip class_id (first value) and take the next 4 values
box = values[i+1:i+5]
boxes.append(box)
return boxes
def compute_iou(box1, box2):
"""Compute Intersection over Union (IoU) between two YOLO format boxes."""
# Convert YOLO format (x_center, y_center, width, height) to corners
def yolo_to_corners(box):
x_center, y_center, width, height = box
x1 = x_center - width/2
y1 = y_center - height/2
x2 = x_center + width/2
y2 = y_center + height/2
return np.array([x1, y1, x2, y2])
box1_corners = yolo_to_corners(box1)
box2_corners = yolo_to_corners(box2)
# Calculate intersection
x1 = max(box1_corners[0], box2_corners[0])
y1 = max(box1_corners[1], box2_corners[1])
x2 = min(box1_corners[2], box2_corners[2])
y2 = min(box1_corners[3], box2_corners[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
# Calculate union
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
union = box1_area + box2_area - intersection
return intersection / (union + 1e-6)
def compute_max_iou(true_boxes, pred_box):
"""Compute maximum IoU between a predicted box and all true boxes"""
max_iou = 0
for true_box in true_boxes:
iou = compute_iou(true_box, pred_box)
max_iou = max(max_iou, iou)
return max_iou
@router.post(ROUTE, tags=["Image Task"],
description=DESCRIPTION)
async def evaluate_image(request: ImageEvaluationRequest):
"""
Evaluate image classification and object detection for forest fire smoke.
Current Model: Random Baseline
- Makes random predictions for both classification and bounding boxes
- Used as a baseline for comparison
Metrics:
- Classification accuracy: Whether an image contains smoke or not
- Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
"""
# Get space info
username, space_url = get_space_info()
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Split dataset
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline with your model inference
#--------------------------------------------------------------------------------------------
smoke_dataset = SmokeDataset(test_dataset,feature_extractor)
# dataloader = DataLoader(smoke_dataset, batch_size=16, shuffle=False)
dataloader = DataLoader(dataset["test"], batch_size=8, collate_fn=collate_fn)
predictions = []
true_labels = []
pred_boxes = []
true_boxes_list = []
for batch_images, batch_annotations in dataloader:
batch_images = batch_images.to(device)
with torch.no_grad():
outputs = model(pixel_values=batch_images)
logits = outputs.logits
probabilities = torch.sigmoid(logits)
batch_predicted_masks = (probabilities[:, 1, :, :] > 0.30).cpu().numpy().astype(np.uint8)
# Post-process predictions and compute metrics
for mask, annotation in zip(batch_predicted_masks, batch_annotations):
predicted_mask_resized = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_NEAREST)
predicted_boxes = get_bounding_boxes_from_mask(predicted_mask_resized)
pred_boxes.append(predicted_boxes)
predictions.append(1 if len(predicted_boxes) > 0 else 0)
true_labels.append(1 if annotation else 0)
# Append smoke detection based on bounding boxes
predictions.append(1 if len(predicted_boxes) > 0 else 0)
print(f"Batch {batch_idx + 1}, Image Prediction: {1 if len(predicted_boxes) > 0 else 0}")
# Parse true boxes for this batch
for annotation in annotations:
if len(annotation) > 0:
true_boxes_list.append(parse_boxes(annotation))
else:
true_boxes_list.append([])
# for example in test_dataset:
# # Extract image and annotations
# image = example["image"]
# original_shape = image.size
# annotation = example.get("annotations", "").strip()
# has_smoke = len(annotation) > 0
# true_labels.append(1 if has_smoke else 0)
# if has_smoke:
# image_true_boxes = parse_boxes(annotation)
# if image_true_boxes:
# true_boxes_list.append(image_true_boxes)
# else:
# true_boxes_list.append([])
# else:
# true_boxes_list.append([])
# # Model Inference
# # Preprocess image
# image = preprocess(image)
# # Ensure correct feature extraction
# image_input = feature_extractor(images=image, return_tensors="pt").pixel_values
# # Perform inference
# with torch.no_grad():
# outputs = model(pixel_values=image_input)
# logits = outputs.logits
# # Threshold and process the segmentation mask
# probabilities = torch.sigmoid(logits)
# predicted_mask = (probabilities[0, 1] > 0.30).cpu().numpy().astype(np.uint8)
# predicted_mask_resized = cv2.resize(predicted_mask, (512,512), interpolation=cv2.INTER_NEAREST)
# # Extract bounding boxes
# predicted_boxes = get_bounding_boxes_from_mask(predicted_mask_resized)
# pred_boxes.append(predicted_boxes)
# # Smoke prediction based on bounding box presence
# predictions.append(1 if len(predicted_boxes) > 0 else 0)
# print(f"Prediction : {1 if len(predicted_boxes) > 0 else 0}")
# # Filter only valid box pairs
# filtered_true_boxes_list = []
# filtered_pred_boxes = []
# for true_boxes, pred_boxes_entry in zip(true_boxes_list, pred_boxes):
# if true_boxes and pred_boxes_entry:
# filtered_true_boxes_list.append(true_boxes)
# filtered_pred_boxes.append(pred_boxes_entry)
# true_boxes_list = filtered_true_boxes_list
# pred_boxes = filtered_pred_boxes
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate classification accuracy
classification_accuracy = accuracy_score(true_labels, predictions)
# Calculate mean IoU for object detection (only for images with smoke)
# For each image, we compute the max IoU between the predicted box and all true boxes
ious = []
for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
max_iou = compute_max_iou(true_boxes, pred_box)
ious.append(max_iou)
mean_iou = float(np.mean(ious)) if ious else 0.0
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"classification_accuracy": float(classification_accuracy),
"mean_iou": mean_iou,
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |