File size: 12,148 Bytes
4d6e8c2
3b09640
 
 
be5011a
3b09640
 
 
ca9f528
78f1a97
 
 
 
ca9f528
efb89bf
 
 
 
f491cd6
 
 
 
 
 
 
 
3b09640
 
 
4d6e8c2
 
 
f491cd6
1c33274
70f5f26
88bb0df
f491cd6
3741946
88bb0df
cd9b6a5
f491cd6
be5011a
d39874c
 
78f1a97
de2943e
78f1a97
 
de2943e
 
 
 
 
 
 
 
 
78f1a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de2943e
 
ca9f528
 
 
 
 
 
 
 
 
 
 
 
 
f82759b
f491cd6
 
 
 
 
 
 
 
 
f7ad336
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c33274
70f5f26
4d6e8c2
 
3b09640
70f5f26
 
3b09640
70f5f26
3b09640
 
 
 
4d6e8c2
3b09640
4d6e8c2
3b09640
 
 
ca9f528
3b09640
13984e6
f491cd6
3b09640
 
 
 
 
 
 
 
9fff4f7
78f1a97
e67b095
ca9f528
3b09640
 
be5011a
 
 
de2943e
ada3b45
 
 
ca9f528
d39874c
ca9f528
de2943e
ca9f528
 
de2943e
 
 
 
 
ca9f528
de2943e
 
ca9f528
 
 
 
 
 
 
 
 
be5011a
 
 
ca9f528
 
 
 
 
 
 
 
4b9ac2a
ca9f528
 
 
 
 
 
 
 
 
 
 
 
 
4b9ac2a
ca9f528
 
4b9ac2a
ca9f528
 
 
 
4b9ac2a
ca9f528
 
 
 
f7ad336
ca9f528
 
 
4b9ac2a
ca9f528
 
 
f491cd6
be5011a
ca9f528
 
 
f491cd6
ca9f528
 
 
 
be5011a
ca9f528
 
f491cd6
3b09640
 
 
 
 
 
 
 
be5011a
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
3b09640
70f5f26
3b09640
 
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
3b09640
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score
import random
import os

from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from PIL import Image
import torch


from ultralytics import YOLO
from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

import os
import torch
import numpy as np
from PIL import Image
from transformers import MobileViTImageProcessor, MobileViTForSemanticSegmentation
import cv2
from tqdm import tqdm
from torch.utils.data import DataLoader

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "Mobile-ViT Smoke Detection"
ROUTE = "/image"

device = "cpu"
model_path = "mobilevit_segmentation_full_data.pth"
feature_extractor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small").to(device)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()


class SmokeDataset(torch.utils.data.Dataset):
    def __init__(self, dataset, feature_extractor, target_size=(224, 224)):
        self.dataset = dataset
        self.feature_extractor = feature_extractor
        self.target_size = target_size

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        example = self.dataset[idx]
        image = example["image"]
        annotation = example.get("annotations", "").strip()

        # Ensure image is resized to a fixed target size using PIL
        if isinstance(image, torch.Tensor):
            image = Image.fromarray(image.numpy())
        resized_image = image.resize(self.target_size, Image.ANTIALIAS)

        # Process image using feature extractor
        features = self.feature_extractor(images=resized_image, return_tensors="pt").pixel_values

        return features.squeeze(0), annotation


def collate_fn(batch):
    images, annotations = zip(*batch)
    images = torch.stack(images)  # Ensure batch has uniform shape
    return images, annotations

    
def preprocess(image):
    # Ensure input image is resized to a fixed size (512, 512)
    image = image.resize((512, 512))

    # Convert to NumPy and ensure BGR normalization
    image = np.array(image)[:, :, ::-1]  # Convert RGB to BGR
    image = np.array(image, dtype=np.float32) / 255.0

    # Return as a PIL Image for feature extractor compatibility
    return Image.fromarray((image * 255).astype(np.uint8))


def preprocess_batch(images):
    """
    Preprocess a batch of images for MobileViT inference.
    Resize to a fixed size (512, 512) and return as PIL Images.
    """
    preprocessed_images = []
    for image in images:
        resized_image = image.resize((512, 512))
        image_array = np.array(resized_image)[:, :, ::-1]  # Convert RGB to BGR
        image_float = np.array(image_array, dtype=np.float32) / 255.0
        processed_image = Image.fromarray((image_float * 255).astype(np.uint8))
        preprocessed_images.append(processed_image)
    return preprocessed_images

def get_bounding_boxes_from_mask(mask):
    """Extract bounding boxes from a binary mask."""
    pred_boxes = []
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for contour in contours:
        if len(contour) > 5:  # Ignore small/noisy contours
            x, y, w, h = cv2.boundingRect(contour)
            pred_boxes.append((x, y, x + w, y + h))
    return pred_boxes

def parse_boxes(annotation_string):
    """Parse multiple boxes from a single annotation string.
    Each box has 5 values: class_id, x_center, y_center, width, height"""
    values = [float(x) for x in annotation_string.strip().split()]
    boxes = []
    # Each box has 5 values
    for i in range(0, len(values), 5):
        if i + 5 <= len(values):
            # Skip class_id (first value) and take the next 4 values
            box = values[i+1:i+5]
            boxes.append(box)
    return boxes

def compute_iou(box1, box2):
    """Compute Intersection over Union (IoU) between two YOLO format boxes."""
    # Convert YOLO format (x_center, y_center, width, height) to corners
    def yolo_to_corners(box):
        x_center, y_center, width, height = box
        x1 = x_center - width/2
        y1 = y_center - height/2
        x2 = x_center + width/2
        y2 = y_center + height/2
        return np.array([x1, y1, x2, y2])
    
    box1_corners = yolo_to_corners(box1)
    box2_corners = yolo_to_corners(box2)
    
    # Calculate intersection
    x1 = max(box1_corners[0], box2_corners[0])
    y1 = max(box1_corners[1], box2_corners[1])
    x2 = min(box1_corners[2], box2_corners[2])
    y2 = min(box1_corners[3], box2_corners[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    
    # Calculate union
    box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
    box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
    union = box1_area + box2_area - intersection
    
    return intersection / (union + 1e-6)

def compute_max_iou(true_boxes, pred_box):
    """Compute maximum IoU between a predicted box and all true boxes"""
    max_iou = 0
    for true_box in true_boxes:
        iou = compute_iou(true_box, pred_box)
        max_iou = max(max_iou, iou)
    return max_iou

@router.post(ROUTE, tags=["Image Task"],
             description=DESCRIPTION)
async def evaluate_image(request: ImageEvaluationRequest):
    """
    Evaluate image classification and object detection for forest fire smoke.
    
    Current Model: Random Baseline
    - Makes random predictions for both classification and bounding boxes
    - Used as a baseline for comparison
    
    Metrics:
    - Classification accuracy: Whether an image contains smoke or not
    - Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
    """
    # Get space info
    username, space_url = get_space_info()
    
    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))

    # Split dataset
    test_dataset = dataset["test"]

    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline with your model inference
    #--------------------------------------------------------------------------------------------   
    smoke_dataset = SmokeDataset(test_dataset,feature_extractor)
    # dataloader = DataLoader(smoke_dataset, batch_size=16, shuffle=False)
    dataloader = DataLoader(dataset["test"], batch_size=8, collate_fn=collate_fn)

    predictions = []
    true_labels = []
    pred_boxes = []  
    true_boxes_list = []  

    for batch_images, batch_annotations in dataloader:
        
        batch_images = batch_images.to(device)
        
        with torch.no_grad():
            outputs = model(pixel_values=batch_images)
            logits = outputs.logits
    
        probabilities = torch.sigmoid(logits)
        batch_predicted_masks = (probabilities[:, 1, :, :] > 0.30).cpu().numpy().astype(np.uint8)
    
        # Post-process predictions and compute metrics
        for mask, annotation in zip(batch_predicted_masks, batch_annotations):
            predicted_mask_resized = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_NEAREST)
            predicted_boxes = get_bounding_boxes_from_mask(predicted_mask_resized)
            pred_boxes.append(predicted_boxes)
            predictions.append(1 if len(predicted_boxes) > 0 else 0)
            true_labels.append(1 if annotation else 0)

            # Append smoke detection based on bounding boxes
            predictions.append(1 if len(predicted_boxes) > 0 else 0)
            print(f"Batch {batch_idx + 1}, Image Prediction: {1 if len(predicted_boxes) > 0 else 0}")
        
        # Parse true boxes for this batch
        for annotation in annotations:
            if len(annotation) > 0:
                true_boxes_list.append(parse_boxes(annotation))
            else:
                true_boxes_list.append([])
    
    # for example in test_dataset:
    #     # Extract image and annotations
    #     image = example["image"]

    #     original_shape = image.size        
    #     annotation = example.get("annotations", "").strip()
    #     has_smoke = len(annotation) > 0
    #     true_labels.append(1 if has_smoke else 0)
    
    #     if has_smoke:
    #         image_true_boxes = parse_boxes(annotation)
    #         if image_true_boxes:
    #             true_boxes_list.append(image_true_boxes)
    #         else:
    #             true_boxes_list.append([])
    #     else:
    #         true_boxes_list.append([])
    
    #     # Model Inference
    
    #     # Preprocess image
    #     image = preprocess(image)
        
    #     # Ensure correct feature extraction
    #     image_input = feature_extractor(images=image, return_tensors="pt").pixel_values
        
    #     # Perform inference
    #     with torch.no_grad():
    #         outputs = model(pixel_values=image_input)
    #         logits = outputs.logits
        
    #     # Threshold and process the segmentation mask
    #     probabilities = torch.sigmoid(logits)
    #     predicted_mask = (probabilities[0, 1] > 0.30).cpu().numpy().astype(np.uint8)
    #     predicted_mask_resized = cv2.resize(predicted_mask, (512,512), interpolation=cv2.INTER_NEAREST)
        
    #     # Extract bounding boxes
    #     predicted_boxes = get_bounding_boxes_from_mask(predicted_mask_resized)
    #     pred_boxes.append(predicted_boxes)
        
    #     # Smoke prediction based on bounding box presence
    #     predictions.append(1 if len(predicted_boxes) > 0 else 0)    
    #     print(f"Prediction : {1 if len(predicted_boxes) > 0 else 0}")
        

    # # Filter only valid box pairs
    # filtered_true_boxes_list = []
    # filtered_pred_boxes = []
    
    # for true_boxes, pred_boxes_entry in zip(true_boxes_list, pred_boxes):
    #     if true_boxes and pred_boxes_entry:
    #         filtered_true_boxes_list.append(true_boxes)
    #         filtered_pred_boxes.append(pred_boxes_entry)
    
    # true_boxes_list = filtered_true_boxes_list
    # pred_boxes = filtered_pred_boxes

    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate classification accuracy
    classification_accuracy = accuracy_score(true_labels, predictions)
    
    # Calculate mean IoU for object detection (only for images with smoke)
    # For each image, we compute the max IoU between the predicted box and all true boxes
    ious = []
    for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
        max_iou = compute_max_iou(true_boxes, pred_box)
        ious.append(max_iou)
    
    mean_iou = float(np.mean(ious)) if ious else 0.0
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "classification_accuracy": float(classification_accuracy),
        "mean_iou": mean_iou,
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    return results