|
from fastapi import APIRouter |
|
from datetime import datetime |
|
from datasets import load_dataset |
|
from sklearn.metrics import accuracy_score |
|
import random |
|
import os |
|
|
|
from .utils.evaluation import AudioEvaluationRequest |
|
from .utils.emissions import tracker, clean_emissions_data, get_space_info |
|
|
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
router = APIRouter() |
|
|
|
DESCRIPTION = "Random Baseline" |
|
ROUTE = "/audio" |
|
|
|
|
|
|
|
@router.post(ROUTE, tags=["Audio Task"], |
|
description=DESCRIPTION) |
|
async def evaluate_audio(request: AudioEvaluationRequest): |
|
""" |
|
Evaluate audio classification for rainforest sound detection. |
|
|
|
Current Model: Random Baseline |
|
- Makes random predictions from the label space (0-1) |
|
- Used as a baseline for comparison |
|
""" |
|
|
|
username, space_url = get_space_info() |
|
|
|
|
|
LABEL_MAPPING = { |
|
"chainsaw": 0, |
|
"environment": 1 |
|
} |
|
|
|
|
|
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) |
|
|
|
|
|
test_dataset = dataset["test"] |
|
|
|
|
|
tracker.start() |
|
tracker.start_task("inference") |
|
|
|
|
|
|
|
load_pretrained(dannywillowliu/frugal_ai_space) |
|
losses = [] |
|
|
|
total = 0 |
|
|
|
correct = 0 |
|
|
|
with torch.no_grad(): |
|
|
|
for i in range(1000): |
|
|
|
inputs = [] |
|
|
|
outputs = [] |
|
|
|
for j in range(4): |
|
|
|
data = next(generator) |
|
|
|
x = data['audio']['array'] |
|
|
|
y = data['label'] |
|
|
|
inputs.append(x) |
|
|
|
outputs.append(y) |
|
|
|
input_values = processor(inputs, return_tensors="pt", padding="longest", sampling_rate=16000).input_values |
|
|
|
logits = model(input_values.cuda()).logits |
|
|
|
loss = torch.nn.functional.cross_entropy(logits, torch.tensor(outputs).cuda()) |
|
|
|
|
|
|
|
probs = torch.nn.functional.softmax(logits) |
|
|
|
chosen = torch.argmax(probs,dim=1) |
|
|
|
|
|
|
|
|
|
true_labels = test_dataset["label"] |
|
predictions = [random.randint(0, 1) for _ in range(len(true_labels))] |
|
|
|
|
|
|
|
|
|
|
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
|
|
accuracy = accuracy_score(true_labels, predictions) |
|
|
|
|
|
results = { |
|
"username": username, |
|
"space_url": space_url, |
|
"submission_timestamp": datetime.now().isoformat(), |
|
"model_description": DESCRIPTION, |
|
"accuracy": float(accuracy), |
|
"energy_consumed_wh": emissions_data.energy_consumed * 1000, |
|
"emissions_gco2eq": emissions_data.emissions * 1000, |
|
"emissions_data": clean_emissions_data(emissions_data), |
|
"api_route": ROUTE, |
|
"dataset_config": { |
|
"dataset_name": request.dataset_name, |
|
"test_size": request.test_size, |
|
"test_seed": request.test_seed |
|
} |
|
} |
|
|
|
return results |