Thomas commited on
Commit
0014ea1
·
1 Parent(s): e14cef5

login to huggingface to be able to download the dataset

Browse files
Files changed (1) hide show
  1. notebooks/template-audio.ipynb +41 -1198
notebooks/template-audio.ipynb CHANGED
@@ -10,38 +10,9 @@
10
  },
11
  {
12
  "cell_type": "code",
13
- "execution_count": 3,
14
  "metadata": {},
15
- "outputs": [
16
- {
17
- "name": "stderr",
18
- "output_type": "stream",
19
- "text": [
20
- "[codecarbon WARNING @ 19:48:07] Multiple instances of codecarbon are allowed to run at the same time.\n",
21
- "[codecarbon INFO @ 19:48:07] [setup] RAM Tracking...\n",
22
- "[codecarbon INFO @ 19:48:07] [setup] CPU Tracking...\n",
23
- "[codecarbon WARNING @ 19:48:09] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
24
- "[codecarbon WARNING @ 19:48:09] No CPU tracking mode found. Falling back on CPU constant mode. \n",
25
- " Windows OS detected: Please install Intel Power Gadget to measure CPU\n",
26
- "\n",
27
- "[codecarbon WARNING @ 19:48:11] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
28
- "[codecarbon INFO @ 19:48:11] CPU Model on constant consumption mode: 13th Gen Intel(R) Core(TM) i7-1365U\n",
29
- "[codecarbon WARNING @ 19:48:11] No CPU tracking mode found. Falling back on CPU constant mode.\n",
30
- "[codecarbon INFO @ 19:48:11] [setup] GPU Tracking...\n",
31
- "[codecarbon INFO @ 19:48:11] No GPU found.\n",
32
- "[codecarbon INFO @ 19:48:11] >>> Tracker's metadata:\n",
33
- "[codecarbon INFO @ 19:48:11] Platform system: Windows-11-10.0.22631-SP0\n",
34
- "[codecarbon INFO @ 19:48:11] Python version: 3.12.7\n",
35
- "[codecarbon INFO @ 19:48:11] CodeCarbon version: 3.0.0_rc0\n",
36
- "[codecarbon INFO @ 19:48:11] Available RAM : 31.347 GB\n",
37
- "[codecarbon INFO @ 19:48:11] CPU count: 12\n",
38
- "[codecarbon INFO @ 19:48:11] CPU model: 13th Gen Intel(R) Core(TM) i7-1365U\n",
39
- "[codecarbon INFO @ 19:48:11] GPU count: None\n",
40
- "[codecarbon INFO @ 19:48:11] GPU model: None\n",
41
- "[codecarbon INFO @ 19:48:11] Saving emissions data to file c:\\git\\submission-template\\notebooks\\emissions.csv\n"
42
- ]
43
- }
44
- ],
45
  "source": [
46
  "from fastapi import APIRouter\n",
47
  "from datetime import datetime\n",
@@ -63,6 +34,16 @@
63
  "}"
64
  ]
65
  },
 
 
 
 
 
 
 
 
 
 
66
  {
67
  "cell_type": "markdown",
68
  "metadata": {},
@@ -72,75 +53,9 @@
72
  },
73
  {
74
  "cell_type": "code",
75
- "execution_count": 4,
76
  "metadata": {},
77
- "outputs": [
78
- {
79
- "data": {
80
- "application/vnd.jupyter.widget-view+json": {
81
- "model_id": "668da7bf85434e098b95c3ec447d78fe",
82
- "version_major": 2,
83
- "version_minor": 0
84
- },
85
- "text/plain": [
86
- "README.md: 0%| | 0.00/5.18k [00:00<?, ?B/s]"
87
- ]
88
- },
89
- "metadata": {},
90
- "output_type": "display_data"
91
- },
92
- {
93
- "name": "stderr",
94
- "output_type": "stream",
95
- "text": [
96
- "c:\\Users\\theo.alvesdacosta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\theo.alvesdacosta\\.cache\\huggingface\\hub\\datasets--QuotaClimat--frugalaichallenge-text-train. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
97
- "To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
98
- " warnings.warn(message)\n"
99
- ]
100
- },
101
- {
102
- "data": {
103
- "application/vnd.jupyter.widget-view+json": {
104
- "model_id": "5b68d43359eb429395da8be7d4b15556",
105
- "version_major": 2,
106
- "version_minor": 0
107
- },
108
- "text/plain": [
109
- "train.parquet: 0%| | 0.00/1.21M [00:00<?, ?B/s]"
110
- ]
111
- },
112
- "metadata": {},
113
- "output_type": "display_data"
114
- },
115
- {
116
- "data": {
117
- "application/vnd.jupyter.widget-view+json": {
118
- "model_id": "140a304773914e9db8f698eabeb40298",
119
- "version_major": 2,
120
- "version_minor": 0
121
- },
122
- "text/plain": [
123
- "Generating train split: 0%| | 0/6091 [00:00<?, ? examples/s]"
124
- ]
125
- },
126
- "metadata": {},
127
- "output_type": "display_data"
128
- },
129
- {
130
- "data": {
131
- "application/vnd.jupyter.widget-view+json": {
132
- "model_id": "6d04e8ab1906400e8e0029949dc523a5",
133
- "version_major": 2,
134
- "version_minor": 0
135
- },
136
- "text/plain": [
137
- "Map: 0%| | 0/6091 [00:00<?, ? examples/s]"
138
- ]
139
- },
140
- "metadata": {},
141
- "output_type": "display_data"
142
- }
143
- ],
144
  "source": [
145
  "request = AudioEvaluationRequest()\n",
146
  "\n",
@@ -152,6 +67,15 @@
152
  "test_dataset = train_test[\"test\"]"
153
  ]
154
  },
 
 
 
 
 
 
 
 
 
155
  {
156
  "cell_type": "markdown",
157
  "metadata": {},
@@ -161,7 +85,7 @@
161
  },
162
  {
163
  "cell_type": "code",
164
- "execution_count": 5,
165
  "metadata": {},
166
  "outputs": [],
167
  "source": [
@@ -172,1020 +96,9 @@
172
  },
173
  {
174
  "cell_type": "code",
175
- "execution_count": 6,
176
  "metadata": {},
177
- "outputs": [
178
- {
179
- "data": {
180
- "text/plain": [
181
- "[1,\n",
182
- " 7,\n",
183
- " 6,\n",
184
- " 6,\n",
185
- " 2,\n",
186
- " 0,\n",
187
- " 1,\n",
188
- " 7,\n",
189
- " 3,\n",
190
- " 6,\n",
191
- " 6,\n",
192
- " 3,\n",
193
- " 6,\n",
194
- " 6,\n",
195
- " 5,\n",
196
- " 0,\n",
197
- " 2,\n",
198
- " 6,\n",
199
- " 2,\n",
200
- " 6,\n",
201
- " 5,\n",
202
- " 4,\n",
203
- " 1,\n",
204
- " 3,\n",
205
- " 6,\n",
206
- " 4,\n",
207
- " 2,\n",
208
- " 1,\n",
209
- " 4,\n",
210
- " 0,\n",
211
- " 3,\n",
212
- " 4,\n",
213
- " 1,\n",
214
- " 5,\n",
215
- " 5,\n",
216
- " 1,\n",
217
- " 2,\n",
218
- " 7,\n",
219
- " 6,\n",
220
- " 1,\n",
221
- " 3,\n",
222
- " 1,\n",
223
- " 7,\n",
224
- " 7,\n",
225
- " 0,\n",
226
- " 0,\n",
227
- " 3,\n",
228
- " 3,\n",
229
- " 3,\n",
230
- " 4,\n",
231
- " 1,\n",
232
- " 4,\n",
233
- " 4,\n",
234
- " 1,\n",
235
- " 4,\n",
236
- " 5,\n",
237
- " 6,\n",
238
- " 1,\n",
239
- " 2,\n",
240
- " 2,\n",
241
- " 2,\n",
242
- " 5,\n",
243
- " 2,\n",
244
- " 7,\n",
245
- " 2,\n",
246
- " 7,\n",
247
- " 7,\n",
248
- " 6,\n",
249
- " 4,\n",
250
- " 2,\n",
251
- " 0,\n",
252
- " 1,\n",
253
- " 6,\n",
254
- " 3,\n",
255
- " 2,\n",
256
- " 5,\n",
257
- " 5,\n",
258
- " 2,\n",
259
- " 0,\n",
260
- " 7,\n",
261
- " 0,\n",
262
- " 1,\n",
263
- " 5,\n",
264
- " 5,\n",
265
- " 7,\n",
266
- " 4,\n",
267
- " 6,\n",
268
- " 7,\n",
269
- " 1,\n",
270
- " 7,\n",
271
- " 1,\n",
272
- " 0,\n",
273
- " 3,\n",
274
- " 4,\n",
275
- " 2,\n",
276
- " 5,\n",
277
- " 3,\n",
278
- " 3,\n",
279
- " 3,\n",
280
- " 2,\n",
281
- " 2,\n",
282
- " 1,\n",
283
- " 0,\n",
284
- " 4,\n",
285
- " 5,\n",
286
- " 7,\n",
287
- " 0,\n",
288
- " 3,\n",
289
- " 1,\n",
290
- " 4,\n",
291
- " 6,\n",
292
- " 0,\n",
293
- " 7,\n",
294
- " 1,\n",
295
- " 1,\n",
296
- " 2,\n",
297
- " 2,\n",
298
- " 4,\n",
299
- " 0,\n",
300
- " 4,\n",
301
- " 3,\n",
302
- " 4,\n",
303
- " 4,\n",
304
- " 2,\n",
305
- " 2,\n",
306
- " 3,\n",
307
- " 3,\n",
308
- " 7,\n",
309
- " 4,\n",
310
- " 7,\n",
311
- " 6,\n",
312
- " 4,\n",
313
- " 5,\n",
314
- " 4,\n",
315
- " 3,\n",
316
- " 6,\n",
317
- " 0,\n",
318
- " 4,\n",
319
- " 0,\n",
320
- " 1,\n",
321
- " 3,\n",
322
- " 6,\n",
323
- " 7,\n",
324
- " 3,\n",
325
- " 3,\n",
326
- " 0,\n",
327
- " 1,\n",
328
- " 2,\n",
329
- " 4,\n",
330
- " 4,\n",
331
- " 3,\n",
332
- " 1,\n",
333
- " 2,\n",
334
- " 4,\n",
335
- " 3,\n",
336
- " 0,\n",
337
- " 5,\n",
338
- " 3,\n",
339
- " 6,\n",
340
- " 3,\n",
341
- " 6,\n",
342
- " 1,\n",
343
- " 3,\n",
344
- " 4,\n",
345
- " 5,\n",
346
- " 4,\n",
347
- " 0,\n",
348
- " 7,\n",
349
- " 3,\n",
350
- " 6,\n",
351
- " 7,\n",
352
- " 4,\n",
353
- " 4,\n",
354
- " 5,\n",
355
- " 3,\n",
356
- " 1,\n",
357
- " 7,\n",
358
- " 4,\n",
359
- " 1,\n",
360
- " 0,\n",
361
- " 3,\n",
362
- " 0,\n",
363
- " 5,\n",
364
- " 3,\n",
365
- " 6,\n",
366
- " 3,\n",
367
- " 0,\n",
368
- " 7,\n",
369
- " 2,\n",
370
- " 0,\n",
371
- " 4,\n",
372
- " 1,\n",
373
- " 2,\n",
374
- " 6,\n",
375
- " 3,\n",
376
- " 4,\n",
377
- " 4,\n",
378
- " 5,\n",
379
- " 1,\n",
380
- " 5,\n",
381
- " 4,\n",
382
- " 0,\n",
383
- " 1,\n",
384
- " 7,\n",
385
- " 3,\n",
386
- " 6,\n",
387
- " 0,\n",
388
- " 7,\n",
389
- " 4,\n",
390
- " 6,\n",
391
- " 3,\n",
392
- " 0,\n",
393
- " 0,\n",
394
- " 4,\n",
395
- " 6,\n",
396
- " 6,\n",
397
- " 4,\n",
398
- " 0,\n",
399
- " 5,\n",
400
- " 7,\n",
401
- " 5,\n",
402
- " 1,\n",
403
- " 3,\n",
404
- " 6,\n",
405
- " 2,\n",
406
- " 3,\n",
407
- " 2,\n",
408
- " 4,\n",
409
- " 5,\n",
410
- " 1,\n",
411
- " 5,\n",
412
- " 0,\n",
413
- " 3,\n",
414
- " 3,\n",
415
- " 0,\n",
416
- " 0,\n",
417
- " 6,\n",
418
- " 6,\n",
419
- " 2,\n",
420
- " 0,\n",
421
- " 7,\n",
422
- " 4,\n",
423
- " 5,\n",
424
- " 7,\n",
425
- " 1,\n",
426
- " 0,\n",
427
- " 4,\n",
428
- " 5,\n",
429
- " 1,\n",
430
- " 7,\n",
431
- " 0,\n",
432
- " 7,\n",
433
- " 2,\n",
434
- " 6,\n",
435
- " 1,\n",
436
- " 3,\n",
437
- " 5,\n",
438
- " 5,\n",
439
- " 6,\n",
440
- " 5,\n",
441
- " 4,\n",
442
- " 3,\n",
443
- " 7,\n",
444
- " 4,\n",
445
- " 3,\n",
446
- " 5,\n",
447
- " 5,\n",
448
- " 7,\n",
449
- " 2,\n",
450
- " 6,\n",
451
- " 1,\n",
452
- " 5,\n",
453
- " 0,\n",
454
- " 3,\n",
455
- " 4,\n",
456
- " 2,\n",
457
- " 3,\n",
458
- " 7,\n",
459
- " 0,\n",
460
- " 1,\n",
461
- " 7,\n",
462
- " 6,\n",
463
- " 7,\n",
464
- " 7,\n",
465
- " 5,\n",
466
- " 6,\n",
467
- " 3,\n",
468
- " 2,\n",
469
- " 3,\n",
470
- " 0,\n",
471
- " 4,\n",
472
- " 3,\n",
473
- " 5,\n",
474
- " 6,\n",
475
- " 0,\n",
476
- " 0,\n",
477
- " 6,\n",
478
- " 6,\n",
479
- " 1,\n",
480
- " 4,\n",
481
- " 0,\n",
482
- " 4,\n",
483
- " 2,\n",
484
- " 7,\n",
485
- " 5,\n",
486
- " 7,\n",
487
- " 6,\n",
488
- " 3,\n",
489
- " 5,\n",
490
- " 6,\n",
491
- " 0,\n",
492
- " 4,\n",
493
- " 5,\n",
494
- " 6,\n",
495
- " 1,\n",
496
- " 2,\n",
497
- " 1,\n",
498
- " 5,\n",
499
- " 3,\n",
500
- " 0,\n",
501
- " 3,\n",
502
- " 7,\n",
503
- " 1,\n",
504
- " 0,\n",
505
- " 7,\n",
506
- " 0,\n",
507
- " 1,\n",
508
- " 0,\n",
509
- " 4,\n",
510
- " 1,\n",
511
- " 1,\n",
512
- " 0,\n",
513
- " 7,\n",
514
- " 1,\n",
515
- " 0,\n",
516
- " 7,\n",
517
- " 6,\n",
518
- " 2,\n",
519
- " 3,\n",
520
- " 7,\n",
521
- " 4,\n",
522
- " 3,\n",
523
- " 4,\n",
524
- " 3,\n",
525
- " 3,\n",
526
- " 2,\n",
527
- " 5,\n",
528
- " 1,\n",
529
- " 5,\n",
530
- " 1,\n",
531
- " 7,\n",
532
- " 3,\n",
533
- " 2,\n",
534
- " 6,\n",
535
- " 4,\n",
536
- " 4,\n",
537
- " 1,\n",
538
- " 2,\n",
539
- " 6,\n",
540
- " 7,\n",
541
- " 2,\n",
542
- " 7,\n",
543
- " 1,\n",
544
- " 3,\n",
545
- " 5,\n",
546
- " 2,\n",
547
- " 6,\n",
548
- " 4,\n",
549
- " 6,\n",
550
- " 7,\n",
551
- " 0,\n",
552
- " 5,\n",
553
- " 1,\n",
554
- " 6,\n",
555
- " 5,\n",
556
- " 3,\n",
557
- " 6,\n",
558
- " 5,\n",
559
- " 4,\n",
560
- " 7,\n",
561
- " 6,\n",
562
- " 5,\n",
563
- " 4,\n",
564
- " 3,\n",
565
- " 0,\n",
566
- " 0,\n",
567
- " 1,\n",
568
- " 7,\n",
569
- " 7,\n",
570
- " 6,\n",
571
- " 1,\n",
572
- " 4,\n",
573
- " 5,\n",
574
- " 6,\n",
575
- " 1,\n",
576
- " 5,\n",
577
- " 1,\n",
578
- " 2,\n",
579
- " 6,\n",
580
- " 2,\n",
581
- " 6,\n",
582
- " 0,\n",
583
- " 2,\n",
584
- " 1,\n",
585
- " 5,\n",
586
- " 5,\n",
587
- " 1,\n",
588
- " 7,\n",
589
- " 0,\n",
590
- " 5,\n",
591
- " 5,\n",
592
- " 1,\n",
593
- " 7,\n",
594
- " 7,\n",
595
- " 2,\n",
596
- " 1,\n",
597
- " 0,\n",
598
- " 1,\n",
599
- " 0,\n",
600
- " 5,\n",
601
- " 4,\n",
602
- " 2,\n",
603
- " 7,\n",
604
- " 4,\n",
605
- " 3,\n",
606
- " 6,\n",
607
- " 7,\n",
608
- " 5,\n",
609
- " 1,\n",
610
- " 0,\n",
611
- " 7,\n",
612
- " 2,\n",
613
- " 1,\n",
614
- " 2,\n",
615
- " 3,\n",
616
- " 1,\n",
617
- " 0,\n",
618
- " 3,\n",
619
- " 2,\n",
620
- " 6,\n",
621
- " 0,\n",
622
- " 5,\n",
623
- " 4,\n",
624
- " 7,\n",
625
- " 1,\n",
626
- " 1,\n",
627
- " 0,\n",
628
- " 7,\n",
629
- " 0,\n",
630
- " 6,\n",
631
- " 7,\n",
632
- " 6,\n",
633
- " 1,\n",
634
- " 5,\n",
635
- " 5,\n",
636
- " 7,\n",
637
- " 6,\n",
638
- " 1,\n",
639
- " 7,\n",
640
- " 6,\n",
641
- " 5,\n",
642
- " 4,\n",
643
- " 1,\n",
644
- " 4,\n",
645
- " 7,\n",
646
- " 5,\n",
647
- " 4,\n",
648
- " 0,\n",
649
- " 0,\n",
650
- " 7,\n",
651
- " 0,\n",
652
- " 0,\n",
653
- " 3,\n",
654
- " 6,\n",
655
- " 2,\n",
656
- " 5,\n",
657
- " 3,\n",
658
- " 0,\n",
659
- " 3,\n",
660
- " 6,\n",
661
- " 5,\n",
662
- " 7,\n",
663
- " 2,\n",
664
- " 6,\n",
665
- " 7,\n",
666
- " 5,\n",
667
- " 2,\n",
668
- " 3,\n",
669
- " 6,\n",
670
- " 7,\n",
671
- " 7,\n",
672
- " 7,\n",
673
- " 6,\n",
674
- " 1,\n",
675
- " 7,\n",
676
- " 4,\n",
677
- " 2,\n",
678
- " 7,\n",
679
- " 5,\n",
680
- " 4,\n",
681
- " 1,\n",
682
- " 2,\n",
683
- " 3,\n",
684
- " 7,\n",
685
- " 0,\n",
686
- " 2,\n",
687
- " 7,\n",
688
- " 6,\n",
689
- " 1,\n",
690
- " 4,\n",
691
- " 0,\n",
692
- " 6,\n",
693
- " 3,\n",
694
- " 1,\n",
695
- " 0,\n",
696
- " 3,\n",
697
- " 4,\n",
698
- " 7,\n",
699
- " 7,\n",
700
- " 4,\n",
701
- " 2,\n",
702
- " 1,\n",
703
- " 0,\n",
704
- " 5,\n",
705
- " 1,\n",
706
- " 7,\n",
707
- " 4,\n",
708
- " 6,\n",
709
- " 7,\n",
710
- " 7,\n",
711
- " 3,\n",
712
- " 4,\n",
713
- " 3,\n",
714
- " 5,\n",
715
- " 4,\n",
716
- " 4,\n",
717
- " 5,\n",
718
- " 0,\n",
719
- " 1,\n",
720
- " 3,\n",
721
- " 7,\n",
722
- " 5,\n",
723
- " 4,\n",
724
- " 7,\n",
725
- " 3,\n",
726
- " 3,\n",
727
- " 3,\n",
728
- " 5,\n",
729
- " 3,\n",
730
- " 3,\n",
731
- " 4,\n",
732
- " 0,\n",
733
- " 1,\n",
734
- " 7,\n",
735
- " 4,\n",
736
- " 7,\n",
737
- " 7,\n",
738
- " 5,\n",
739
- " 0,\n",
740
- " 0,\n",
741
- " 5,\n",
742
- " 2,\n",
743
- " 6,\n",
744
- " 2,\n",
745
- " 6,\n",
746
- " 7,\n",
747
- " 6,\n",
748
- " 5,\n",
749
- " 7,\n",
750
- " 5,\n",
751
- " 7,\n",
752
- " 1,\n",
753
- " 6,\n",
754
- " 6,\n",
755
- " 0,\n",
756
- " 4,\n",
757
- " 7,\n",
758
- " 3,\n",
759
- " 0,\n",
760
- " 0,\n",
761
- " 2,\n",
762
- " 5,\n",
763
- " 2,\n",
764
- " 3,\n",
765
- " 7,\n",
766
- " 1,\n",
767
- " 0,\n",
768
- " 3,\n",
769
- " 0,\n",
770
- " 0,\n",
771
- " 3,\n",
772
- " 3,\n",
773
- " 7,\n",
774
- " 3,\n",
775
- " 0,\n",
776
- " 1,\n",
777
- " 1,\n",
778
- " 6,\n",
779
- " 0,\n",
780
- " 0,\n",
781
- " 5,\n",
782
- " 0,\n",
783
- " 3,\n",
784
- " 4,\n",
785
- " 6,\n",
786
- " 7,\n",
787
- " 4,\n",
788
- " 0,\n",
789
- " 4,\n",
790
- " 4,\n",
791
- " 5,\n",
792
- " 4,\n",
793
- " 4,\n",
794
- " 3,\n",
795
- " 6,\n",
796
- " 5,\n",
797
- " 2,\n",
798
- " 0,\n",
799
- " 6,\n",
800
- " 0,\n",
801
- " 6,\n",
802
- " 4,\n",
803
- " 3,\n",
804
- " 5,\n",
805
- " 7,\n",
806
- " 7,\n",
807
- " 5,\n",
808
- " 5,\n",
809
- " 1,\n",
810
- " 5,\n",
811
- " 2,\n",
812
- " 7,\n",
813
- " 7,\n",
814
- " 6,\n",
815
- " 6,\n",
816
- " 7,\n",
817
- " 6,\n",
818
- " 5,\n",
819
- " 2,\n",
820
- " 4,\n",
821
- " 0,\n",
822
- " 4,\n",
823
- " 4,\n",
824
- " 7,\n",
825
- " 5,\n",
826
- " 2,\n",
827
- " 7,\n",
828
- " 0,\n",
829
- " 6,\n",
830
- " 0,\n",
831
- " 2,\n",
832
- " 6,\n",
833
- " 6,\n",
834
- " 2,\n",
835
- " 3,\n",
836
- " 0,\n",
837
- " 5,\n",
838
- " 0,\n",
839
- " 5,\n",
840
- " 7,\n",
841
- " 2,\n",
842
- " 7,\n",
843
- " 4,\n",
844
- " 7,\n",
845
- " 4,\n",
846
- " 0,\n",
847
- " 7,\n",
848
- " 1,\n",
849
- " 4,\n",
850
- " 5,\n",
851
- " 0,\n",
852
- " 5,\n",
853
- " 5,\n",
854
- " 2,\n",
855
- " 0,\n",
856
- " 2,\n",
857
- " 5,\n",
858
- " 5,\n",
859
- " 6,\n",
860
- " 3,\n",
861
- " 4,\n",
862
- " 1,\n",
863
- " 7,\n",
864
- " 7,\n",
865
- " 2,\n",
866
- " 3,\n",
867
- " 2,\n",
868
- " 5,\n",
869
- " 0,\n",
870
- " 7,\n",
871
- " 2,\n",
872
- " 3,\n",
873
- " 7,\n",
874
- " 2,\n",
875
- " 4,\n",
876
- " 0,\n",
877
- " 5,\n",
878
- " 7,\n",
879
- " 3,\n",
880
- " 6,\n",
881
- " 7,\n",
882
- " 6,\n",
883
- " 4,\n",
884
- " 3,\n",
885
- " 6,\n",
886
- " 5,\n",
887
- " 4,\n",
888
- " 0,\n",
889
- " 3,\n",
890
- " 4,\n",
891
- " 3,\n",
892
- " 5,\n",
893
- " 2,\n",
894
- " 4,\n",
895
- " 0,\n",
896
- " 3,\n",
897
- " 6,\n",
898
- " 1,\n",
899
- " 3,\n",
900
- " 1,\n",
901
- " 4,\n",
902
- " 3,\n",
903
- " 3,\n",
904
- " 3,\n",
905
- " 0,\n",
906
- " 7,\n",
907
- " 6,\n",
908
- " 2,\n",
909
- " 4,\n",
910
- " 6,\n",
911
- " 5,\n",
912
- " 4,\n",
913
- " 1,\n",
914
- " 7,\n",
915
- " 6,\n",
916
- " 1,\n",
917
- " 4,\n",
918
- " 3,\n",
919
- " 0,\n",
920
- " 7,\n",
921
- " 3,\n",
922
- " 1,\n",
923
- " 2,\n",
924
- " 1,\n",
925
- " 6,\n",
926
- " 4,\n",
927
- " 7,\n",
928
- " 1,\n",
929
- " 7,\n",
930
- " 1,\n",
931
- " 5,\n",
932
- " 1,\n",
933
- " 6,\n",
934
- " 3,\n",
935
- " 0,\n",
936
- " 2,\n",
937
- " 6,\n",
938
- " 7,\n",
939
- " 7,\n",
940
- " 0,\n",
941
- " 1,\n",
942
- " 4,\n",
943
- " 0,\n",
944
- " 4,\n",
945
- " 5,\n",
946
- " 3,\n",
947
- " 6,\n",
948
- " 2,\n",
949
- " 3,\n",
950
- " 4,\n",
951
- " 1,\n",
952
- " 6,\n",
953
- " 2,\n",
954
- " 4,\n",
955
- " 4,\n",
956
- " 6,\n",
957
- " 4,\n",
958
- " 5,\n",
959
- " 7,\n",
960
- " 1,\n",
961
- " 7,\n",
962
- " 7,\n",
963
- " 4,\n",
964
- " 7,\n",
965
- " 4,\n",
966
- " 3,\n",
967
- " 3,\n",
968
- " 6,\n",
969
- " 1,\n",
970
- " 2,\n",
971
- " 0,\n",
972
- " 0,\n",
973
- " 0,\n",
974
- " 2,\n",
975
- " 5,\n",
976
- " 6,\n",
977
- " 5,\n",
978
- " 7,\n",
979
- " 5,\n",
980
- " 7,\n",
981
- " 1,\n",
982
- " 1,\n",
983
- " 2,\n",
984
- " 1,\n",
985
- " 6,\n",
986
- " 5,\n",
987
- " 7,\n",
988
- " 0,\n",
989
- " 0,\n",
990
- " 5,\n",
991
- " 5,\n",
992
- " 0,\n",
993
- " 3,\n",
994
- " 7,\n",
995
- " 5,\n",
996
- " 2,\n",
997
- " 5,\n",
998
- " 4,\n",
999
- " 2,\n",
1000
- " 3,\n",
1001
- " 6,\n",
1002
- " 2,\n",
1003
- " 3,\n",
1004
- " 6,\n",
1005
- " 0,\n",
1006
- " 0,\n",
1007
- " 2,\n",
1008
- " 6,\n",
1009
- " 0,\n",
1010
- " 1,\n",
1011
- " 3,\n",
1012
- " 3,\n",
1013
- " 6,\n",
1014
- " 4,\n",
1015
- " 6,\n",
1016
- " 4,\n",
1017
- " 6,\n",
1018
- " 0,\n",
1019
- " 0,\n",
1020
- " 2,\n",
1021
- " 3,\n",
1022
- " 6,\n",
1023
- " 2,\n",
1024
- " 2,\n",
1025
- " 6,\n",
1026
- " 6,\n",
1027
- " 2,\n",
1028
- " 4,\n",
1029
- " 3,\n",
1030
- " 3,\n",
1031
- " 6,\n",
1032
- " 7,\n",
1033
- " 7,\n",
1034
- " 1,\n",
1035
- " 1,\n",
1036
- " 7,\n",
1037
- " 7,\n",
1038
- " 6,\n",
1039
- " 1,\n",
1040
- " 7,\n",
1041
- " 0,\n",
1042
- " 0,\n",
1043
- " 2,\n",
1044
- " 4,\n",
1045
- " 2,\n",
1046
- " 2,\n",
1047
- " 3,\n",
1048
- " 0,\n",
1049
- " 1,\n",
1050
- " 4,\n",
1051
- " 0,\n",
1052
- " 4,\n",
1053
- " 6,\n",
1054
- " 5,\n",
1055
- " 3,\n",
1056
- " 2,\n",
1057
- " 3,\n",
1058
- " 2,\n",
1059
- " 3,\n",
1060
- " 6,\n",
1061
- " 2,\n",
1062
- " 1,\n",
1063
- " 4,\n",
1064
- " 7,\n",
1065
- " 6,\n",
1066
- " 4,\n",
1067
- " 5,\n",
1068
- " 6,\n",
1069
- " 7,\n",
1070
- " 7,\n",
1071
- " 2,\n",
1072
- " 0,\n",
1073
- " 5,\n",
1074
- " 5,\n",
1075
- " 0,\n",
1076
- " 3,\n",
1077
- " 6,\n",
1078
- " 6,\n",
1079
- " 5,\n",
1080
- " 4,\n",
1081
- " 4,\n",
1082
- " 7,\n",
1083
- " 0,\n",
1084
- " 5,\n",
1085
- " 1,\n",
1086
- " 7,\n",
1087
- " 0,\n",
1088
- " 3,\n",
1089
- " 1,\n",
1090
- " 7,\n",
1091
- " 0,\n",
1092
- " 1,\n",
1093
- " 4,\n",
1094
- " 7,\n",
1095
- " 5,\n",
1096
- " 0,\n",
1097
- " 4,\n",
1098
- " 0,\n",
1099
- " 0,\n",
1100
- " 1,\n",
1101
- " 0,\n",
1102
- " 6,\n",
1103
- " 4,\n",
1104
- " 0,\n",
1105
- " 5,\n",
1106
- " 4,\n",
1107
- " 6,\n",
1108
- " 6,\n",
1109
- " 7,\n",
1110
- " 2,\n",
1111
- " 6,\n",
1112
- " 2,\n",
1113
- " 6,\n",
1114
- " 0,\n",
1115
- " 3,\n",
1116
- " 2,\n",
1117
- " 2,\n",
1118
- " 1,\n",
1119
- " 5,\n",
1120
- " 4,\n",
1121
- " 7,\n",
1122
- " 6,\n",
1123
- " 6,\n",
1124
- " 2,\n",
1125
- " 5,\n",
1126
- " 5,\n",
1127
- " 5,\n",
1128
- " 0,\n",
1129
- " 3,\n",
1130
- " 5,\n",
1131
- " 4,\n",
1132
- " 5,\n",
1133
- " 7,\n",
1134
- " 5,\n",
1135
- " 0,\n",
1136
- " 5,\n",
1137
- " 0,\n",
1138
- " 0,\n",
1139
- " 2,\n",
1140
- " 0,\n",
1141
- " 2,\n",
1142
- " 1,\n",
1143
- " 0,\n",
1144
- " 2,\n",
1145
- " 4,\n",
1146
- " 3,\n",
1147
- " 4,\n",
1148
- " 1,\n",
1149
- " 7,\n",
1150
- " 2,\n",
1151
- " 1,\n",
1152
- " 0,\n",
1153
- " 3,\n",
1154
- " 0,\n",
1155
- " 3,\n",
1156
- " 1,\n",
1157
- " 1,\n",
1158
- " 0,\n",
1159
- " 5,\n",
1160
- " 3,\n",
1161
- " 1,\n",
1162
- " 2,\n",
1163
- " 5,\n",
1164
- " 6,\n",
1165
- " 7,\n",
1166
- " 6,\n",
1167
- " 7,\n",
1168
- " 0,\n",
1169
- " 2,\n",
1170
- " 6,\n",
1171
- " 3,\n",
1172
- " 1,\n",
1173
- " 5,\n",
1174
- " 4,\n",
1175
- " 2,\n",
1176
- " 4,\n",
1177
- " 6,\n",
1178
- " 5,\n",
1179
- " 2,\n",
1180
- " 7,\n",
1181
- " ...]"
1182
- ]
1183
- },
1184
- "execution_count": 6,
1185
- "metadata": {},
1186
- "output_type": "execute_result"
1187
- }
1188
- ],
1189
  "source": [
1190
  "\n",
1191
  "#--------------------------------------------------------------------------------------------\n",
@@ -1206,31 +119,9 @@
1206
  },
1207
  {
1208
  "cell_type": "code",
1209
- "execution_count": 8,
1210
  "metadata": {},
1211
- "outputs": [
1212
- {
1213
- "name": "stderr",
1214
- "output_type": "stream",
1215
- "text": [
1216
- "[codecarbon WARNING @ 19:53:32] Background scheduler didn't run for a long period (47s), results might be inaccurate\n",
1217
- "[codecarbon INFO @ 19:53:32] Energy consumed for RAM : 0.000156 kWh. RAM Power : 11.755242347717285 W\n",
1218
- "[codecarbon INFO @ 19:53:32] Delta energy consumed for CPU with constant : 0.000564 kWh, power : 42.5 W\n",
1219
- "[codecarbon INFO @ 19:53:32] Energy consumed for All CPU : 0.000564 kWh\n",
1220
- "[codecarbon INFO @ 19:53:32] 0.000720 kWh of electricity used since the beginning.\n"
1221
- ]
1222
- },
1223
- {
1224
- "data": {
1225
- "text/plain": [
1226
- "EmissionsData(timestamp='2025-01-21T19:53:32', project_name='codecarbon', run_id='908f2e7e-4bb2-4991-a0f6-56bf8d7eda21', experiment_id='5b0fa12a-3dd7-45bb-9766-cc326314d9f1', duration=47.736408500000834, emissions=4.032368007471064e-05, emissions_rate=8.444466886328872e-07, cpu_power=42.5, gpu_power=0.0, ram_power=11.755242347717285, cpu_energy=0.0005636615353475565, gpu_energy=0, ram_energy=0.00015590305493261682, energy_consumed=0.0007195645902801733, country_name='France', country_iso_code='FRA', region='île-de-france', cloud_provider='', cloud_region='', os='Windows-11-10.0.22631-SP0', python_version='3.12.7', codecarbon_version='3.0.0_rc0', cpu_count=12, cpu_model='13th Gen Intel(R) Core(TM) i7-1365U', gpu_count=None, gpu_model=None, longitude=2.3494, latitude=48.8558, ram_total_size=31.347312927246094, tracking_mode='machine', on_cloud='N', pue=1.0)"
1227
- ]
1228
- },
1229
- "execution_count": 8,
1230
- "metadata": {},
1231
- "output_type": "execute_result"
1232
- }
1233
- ],
1234
  "source": [
1235
  "# Stop tracking emissions\n",
1236
  "emissions_data = tracker.stop_task()\n",
@@ -1239,20 +130,9 @@
1239
  },
1240
  {
1241
  "cell_type": "code",
1242
- "execution_count": 9,
1243
  "metadata": {},
1244
- "outputs": [
1245
- {
1246
- "data": {
1247
- "text/plain": [
1248
- "0.10090237899917966"
1249
- ]
1250
- },
1251
- "execution_count": 9,
1252
- "metadata": {},
1253
- "output_type": "execute_result"
1254
- }
1255
- ],
1256
  "source": [
1257
  "# Calculate accuracy\n",
1258
  "accuracy = accuracy_score(true_labels, predictions)\n",
@@ -1261,53 +141,9 @@
1261
  },
1262
  {
1263
  "cell_type": "code",
1264
- "execution_count": 10,
1265
  "metadata": {},
1266
- "outputs": [
1267
- {
1268
- "data": {
1269
- "text/plain": [
1270
- "{'submission_timestamp': '2025-01-21T19:53:46.639165',\n",
1271
- " 'accuracy': 0.10090237899917966,\n",
1272
- " 'energy_consumed_wh': 0.7195645902801733,\n",
1273
- " 'emissions_gco2eq': 0.040323680074710634,\n",
1274
- " 'emissions_data': {'run_id': '908f2e7e-4bb2-4991-a0f6-56bf8d7eda21',\n",
1275
- " 'duration': 47.736408500000834,\n",
1276
- " 'emissions': 4.032368007471064e-05,\n",
1277
- " 'emissions_rate': 8.444466886328872e-07,\n",
1278
- " 'cpu_power': 42.5,\n",
1279
- " 'gpu_power': 0.0,\n",
1280
- " 'ram_power': 11.755242347717285,\n",
1281
- " 'cpu_energy': 0.0005636615353475565,\n",
1282
- " 'gpu_energy': 0,\n",
1283
- " 'ram_energy': 0.00015590305493261682,\n",
1284
- " 'energy_consumed': 0.0007195645902801733,\n",
1285
- " 'country_name': 'France',\n",
1286
- " 'country_iso_code': 'FRA',\n",
1287
- " 'region': 'île-de-france',\n",
1288
- " 'cloud_provider': '',\n",
1289
- " 'cloud_region': '',\n",
1290
- " 'os': 'Windows-11-10.0.22631-SP0',\n",
1291
- " 'python_version': '3.12.7',\n",
1292
- " 'codecarbon_version': '3.0.0_rc0',\n",
1293
- " 'cpu_count': 12,\n",
1294
- " 'cpu_model': '13th Gen Intel(R) Core(TM) i7-1365U',\n",
1295
- " 'gpu_count': None,\n",
1296
- " 'gpu_model': None,\n",
1297
- " 'ram_total_size': 31.347312927246094,\n",
1298
- " 'tracking_mode': 'machine',\n",
1299
- " 'on_cloud': 'N',\n",
1300
- " 'pue': 1.0},\n",
1301
- " 'dataset_config': {'dataset_name': 'QuotaClimat/frugalaichallenge-text-train',\n",
1302
- " 'test_size': 0.2,\n",
1303
- " 'test_seed': 42}}"
1304
- ]
1305
- },
1306
- "execution_count": 10,
1307
- "metadata": {},
1308
- "output_type": "execute_result"
1309
- }
1310
- ],
1311
  "source": [
1312
  "# Prepare results dictionary\n",
1313
  "results = {\n",
@@ -1325,11 +161,18 @@
1325
  "\n",
1326
  "results"
1327
  ]
 
 
 
 
 
 
 
1328
  }
1329
  ],
1330
  "metadata": {
1331
  "kernelspec": {
1332
- "display_name": "base",
1333
  "language": "python",
1334
  "name": "python3"
1335
  },
@@ -1343,7 +186,7 @@
1343
  "name": "python",
1344
  "nbconvert_exporter": "python",
1345
  "pygments_lexer": "ipython3",
1346
- "version": "3.12.7"
1347
  }
1348
  },
1349
  "nbformat": 4,
 
10
  },
11
  {
12
  "cell_type": "code",
13
+ "execution_count": null,
14
  "metadata": {},
15
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  "source": [
17
  "from fastapi import APIRouter\n",
18
  "from datetime import datetime\n",
 
34
  "}"
35
  ]
36
  },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "from huggingface_hub import login\n",
44
+ "login()"
45
+ ]
46
+ },
47
  {
48
  "cell_type": "markdown",
49
  "metadata": {},
 
53
  },
54
  {
55
  "cell_type": "code",
56
+ "execution_count": null,
57
  "metadata": {},
58
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  "source": [
60
  "request = AudioEvaluationRequest()\n",
61
  "\n",
 
67
  "test_dataset = train_test[\"test\"]"
68
  ]
69
  },
70
+ {
71
+ "cell_type": "code",
72
+ "execution_count": null,
73
+ "metadata": {},
74
+ "outputs": [],
75
+ "source": [
76
+ "train_test.shape"
77
+ ]
78
+ },
79
  {
80
  "cell_type": "markdown",
81
  "metadata": {},
 
85
  },
86
  {
87
  "cell_type": "code",
88
+ "execution_count": 8,
89
  "metadata": {},
90
  "outputs": [],
91
  "source": [
 
96
  },
97
  {
98
  "cell_type": "code",
99
+ "execution_count": null,
100
  "metadata": {},
101
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  "source": [
103
  "\n",
104
  "#--------------------------------------------------------------------------------------------\n",
 
119
  },
120
  {
121
  "cell_type": "code",
122
+ "execution_count": null,
123
  "metadata": {},
124
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  "source": [
126
  "# Stop tracking emissions\n",
127
  "emissions_data = tracker.stop_task()\n",
 
130
  },
131
  {
132
  "cell_type": "code",
133
+ "execution_count": null,
134
  "metadata": {},
135
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
136
  "source": [
137
  "# Calculate accuracy\n",
138
  "accuracy = accuracy_score(true_labels, predictions)\n",
 
141
  },
142
  {
143
  "cell_type": "code",
144
+ "execution_count": null,
145
  "metadata": {},
146
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
  "source": [
148
  "# Prepare results dictionary\n",
149
  "results = {\n",
 
161
  "\n",
162
  "results"
163
  ]
164
+ },
165
+ {
166
+ "cell_type": "code",
167
+ "execution_count": null,
168
+ "metadata": {},
169
+ "outputs": [],
170
+ "source": []
171
  }
172
  ],
173
  "metadata": {
174
  "kernelspec": {
175
+ "display_name": "venv",
176
  "language": "python",
177
  "name": "python3"
178
  },
 
186
  "name": "python",
187
  "nbconvert_exporter": "python",
188
  "pygments_lexer": "ipython3",
189
+ "version": "3.9.6"
190
  }
191
  },
192
  "nbformat": 4,