Spaces:
Running
on
Zero
Running
on
Zero
优化进度显示
Browse files- __pycache__/config.cpython-310.pyc +0 -0
- app.py +21 -6
__pycache__/config.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/config.cpython-310.pyc and b/__pycache__/config.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -93,6 +93,7 @@ def validate_dimensions(width: int, height: int) -> None:
|
|
| 93 |
|
| 94 |
|
| 95 |
|
|
|
|
| 96 |
|
| 97 |
@spaces.GPU
|
| 98 |
def generate(
|
|
@@ -106,17 +107,27 @@ def generate(
|
|
| 106 |
seed: int,
|
| 107 |
randomize_seed: bool,
|
| 108 |
guidance_scale: float,
|
| 109 |
-
num_inference_steps: int
|
| 110 |
-
progress:gr.Progress=gr.Progress(track_tqdm=True),
|
| 111 |
):
|
|
|
|
|
|
|
| 112 |
if randomize_seed:
|
| 113 |
seed = random.randint(0, MAX_SEED)
|
| 114 |
|
| 115 |
"""Generate images based on the given parameters."""
|
| 116 |
-
start_time = time.time()
|
| 117 |
upscaler_pipe = None
|
| 118 |
backup_scheduler = None
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
try:
|
| 121 |
# Memory management
|
| 122 |
torch.cuda.empty_cache()
|
|
@@ -140,6 +151,7 @@ def generate(
|
|
| 140 |
|
| 141 |
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
| 142 |
|
|
|
|
| 143 |
latents = pipe(
|
| 144 |
prompt=prompt,
|
| 145 |
negative_prompt=negative_prompt,
|
|
@@ -149,8 +161,9 @@ def generate(
|
|
| 149 |
num_inference_steps=num_inference_steps,
|
| 150 |
generator=generator,
|
| 151 |
output_type="latent",
|
|
|
|
| 152 |
).images
|
| 153 |
-
|
| 154 |
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
| 155 |
images = upscaler_pipe(
|
| 156 |
prompt=prompt,
|
|
@@ -161,9 +174,11 @@ def generate(
|
|
| 161 |
strength=upscaler_strength,
|
| 162 |
generator=generator,
|
| 163 |
output_type="pil",
|
|
|
|
| 164 |
).images
|
| 165 |
-
|
| 166 |
-
|
|
|
|
| 167 |
except GenerationError as e:
|
| 168 |
logger.warning(f"Generation validation error: {str(e)}")
|
| 169 |
raise gr.Error(str(e))
|
|
|
|
| 93 |
|
| 94 |
|
| 95 |
|
| 96 |
+
progress=gr.Progress()
|
| 97 |
|
| 98 |
@spaces.GPU
|
| 99 |
def generate(
|
|
|
|
| 107 |
seed: int,
|
| 108 |
randomize_seed: bool,
|
| 109 |
guidance_scale: float,
|
| 110 |
+
num_inference_steps: int
|
|
|
|
| 111 |
):
|
| 112 |
+
progress(0,desc="Starting")
|
| 113 |
+
|
| 114 |
if randomize_seed:
|
| 115 |
seed = random.randint(0, MAX_SEED)
|
| 116 |
|
| 117 |
"""Generate images based on the given parameters."""
|
|
|
|
| 118 |
upscaler_pipe = None
|
| 119 |
backup_scheduler = None
|
| 120 |
|
| 121 |
+
def callback1(pipe, step, timestep, callback_kwargs):
|
| 122 |
+
progress_value = 0.1 + ((step+1.0)/num_inference_steps)*(0.5/1.0)
|
| 123 |
+
progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
|
| 124 |
+
return callback_kwargs
|
| 125 |
+
|
| 126 |
+
def callback2(pipe, step, timestep, callback_kwargs):
|
| 127 |
+
progress_value = 0.6 + ((step+1.0)/num_inference_steps)*(0.4/1.0)
|
| 128 |
+
progress(progress_value, desc=f"Image optimizing, {step + 1}/{num_inference_steps} steps")
|
| 129 |
+
return callback_kwargs
|
| 130 |
+
|
| 131 |
try:
|
| 132 |
# Memory management
|
| 133 |
torch.cuda.empty_cache()
|
|
|
|
| 151 |
|
| 152 |
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
| 153 |
|
| 154 |
+
progress(0.1,desc="Image generating")
|
| 155 |
latents = pipe(
|
| 156 |
prompt=prompt,
|
| 157 |
negative_prompt=negative_prompt,
|
|
|
|
| 161 |
num_inference_steps=num_inference_steps,
|
| 162 |
generator=generator,
|
| 163 |
output_type="latent",
|
| 164 |
+
callback_on_step_end=callback1
|
| 165 |
).images
|
| 166 |
+
progress(0.6,desc="Image optimizing")
|
| 167 |
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
| 168 |
images = upscaler_pipe(
|
| 169 |
prompt=prompt,
|
|
|
|
| 174 |
strength=upscaler_strength,
|
| 175 |
generator=generator,
|
| 176 |
output_type="pil",
|
| 177 |
+
callback_on_step_end=callback2
|
| 178 |
).images
|
| 179 |
+
out_img = images[0]
|
| 180 |
+
progress(1,desc="Complete")
|
| 181 |
+
return out_img
|
| 182 |
except GenerationError as e:
|
| 183 |
logger.warning(f"Generation validation error: {str(e)}")
|
| 184 |
raise gr.Error(str(e))
|