Spaces:
Running
on
Zero
Running
on
Zero
优化命名
Browse files- __pycache__/config.cpython-310.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- app.py +10 -10
__pycache__/config.cpython-310.pyc
CHANGED
Binary files a/__pycache__/config.cpython-310.pyc and b/__pycache__/config.cpython-310.pyc differ
|
|
__pycache__/utils.cpython-310.pyc
CHANGED
Binary files a/__pycache__/utils.cpython-310.pyc and b/__pycache__/utils.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -102,8 +102,8 @@ def generate(
|
|
102 |
width: int,
|
103 |
height: int,
|
104 |
scheduler: str,
|
105 |
-
|
106 |
-
|
107 |
seed: int,
|
108 |
randomize_seed: bool,
|
109 |
guidance_scale: float,
|
@@ -123,7 +123,7 @@ def generate(
|
|
123 |
progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
|
124 |
return callback_kwargs
|
125 |
|
126 |
-
optimizing_steps = int(num_inference_steps *
|
127 |
def callback2(pipe, step, timestep, callback_kwargs):
|
128 |
progress_value = 0.6 + ((step+1.0)/optimizing_steps)*(0.4/1.0)
|
129 |
progress(progress_value, desc=f"Image optimizing, {step + 1}/{optimizing_steps} steps")
|
@@ -164,14 +164,14 @@ def generate(
|
|
164 |
output_type="latent",
|
165 |
callback_on_step_end=callback1
|
166 |
).images
|
167 |
-
upscaled_latents = utils.upscale(latents, "nearest-exact",
|
168 |
images = upscaler_pipe(
|
169 |
prompt=prompt,
|
170 |
negative_prompt=negative_prompt,
|
171 |
image=upscaled_latents,
|
172 |
guidance_scale=guidance_scale,
|
173 |
num_inference_steps=num_inference_steps,
|
174 |
-
strength=
|
175 |
generator=generator,
|
176 |
output_type="pil",
|
177 |
callback_on_step_end=callback2
|
@@ -254,15 +254,15 @@ with gr.Blocks(css=custom_css).queue() as demo:
|
|
254 |
value=1216,
|
255 |
)
|
256 |
with gr.Row():
|
257 |
-
|
258 |
-
label="
|
259 |
minimum=0,
|
260 |
maximum=1,
|
261 |
step=0.05,
|
262 |
value=0.55,
|
263 |
)
|
264 |
-
|
265 |
-
label="
|
266 |
minimum=1,
|
267 |
maximum=1.5,
|
268 |
step=0.1,
|
@@ -314,7 +314,7 @@ with gr.Blocks(css=custom_css).queue() as demo:
|
|
314 |
prompt, negative_prompt,
|
315 |
width, height,
|
316 |
scheduler,
|
317 |
-
|
318 |
seed,randomize_seed,
|
319 |
guidance_scale,num_inference_steps
|
320 |
],
|
|
|
102 |
width: int,
|
103 |
height: int,
|
104 |
scheduler: str,
|
105 |
+
opt_strength:float,
|
106 |
+
opt_scale:float,
|
107 |
seed: int,
|
108 |
randomize_seed: bool,
|
109 |
guidance_scale: float,
|
|
|
123 |
progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
|
124 |
return callback_kwargs
|
125 |
|
126 |
+
optimizing_steps = int(num_inference_steps * opt_strength)
|
127 |
def callback2(pipe, step, timestep, callback_kwargs):
|
128 |
progress_value = 0.6 + ((step+1.0)/optimizing_steps)*(0.4/1.0)
|
129 |
progress(progress_value, desc=f"Image optimizing, {step + 1}/{optimizing_steps} steps")
|
|
|
164 |
output_type="latent",
|
165 |
callback_on_step_end=callback1
|
166 |
).images
|
167 |
+
upscaled_latents = utils.upscale(latents, "nearest-exact", opt_scale)
|
168 |
images = upscaler_pipe(
|
169 |
prompt=prompt,
|
170 |
negative_prompt=negative_prompt,
|
171 |
image=upscaled_latents,
|
172 |
guidance_scale=guidance_scale,
|
173 |
num_inference_steps=num_inference_steps,
|
174 |
+
strength=opt_strength,
|
175 |
generator=generator,
|
176 |
output_type="pil",
|
177 |
callback_on_step_end=callback2
|
|
|
254 |
value=1216,
|
255 |
)
|
256 |
with gr.Row():
|
257 |
+
optimization_strength = gr.Slider(
|
258 |
+
label="Optimization strength",
|
259 |
minimum=0,
|
260 |
maximum=1,
|
261 |
step=0.05,
|
262 |
value=0.55,
|
263 |
)
|
264 |
+
optimization_scale = gr.Slider(
|
265 |
+
label="Optimization scale ratio",
|
266 |
minimum=1,
|
267 |
maximum=1.5,
|
268 |
step=0.1,
|
|
|
314 |
prompt, negative_prompt,
|
315 |
width, height,
|
316 |
scheduler,
|
317 |
+
optimization_strength,optimization_scale,
|
318 |
seed,randomize_seed,
|
319 |
guidance_scale,num_inference_steps
|
320 |
],
|