Spaces:
Running
on
Zero
Running
on
Zero
优化命名
Browse files- __pycache__/config.cpython-310.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- app.py +10 -10
__pycache__/config.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/config.cpython-310.pyc and b/__pycache__/config.cpython-310.pyc differ
|
|
|
__pycache__/utils.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/utils.cpython-310.pyc and b/__pycache__/utils.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -102,8 +102,8 @@ def generate(
|
|
| 102 |
width: int,
|
| 103 |
height: int,
|
| 104 |
scheduler: str,
|
| 105 |
-
|
| 106 |
-
|
| 107 |
seed: int,
|
| 108 |
randomize_seed: bool,
|
| 109 |
guidance_scale: float,
|
|
@@ -123,7 +123,7 @@ def generate(
|
|
| 123 |
progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
|
| 124 |
return callback_kwargs
|
| 125 |
|
| 126 |
-
optimizing_steps = int(num_inference_steps *
|
| 127 |
def callback2(pipe, step, timestep, callback_kwargs):
|
| 128 |
progress_value = 0.6 + ((step+1.0)/optimizing_steps)*(0.4/1.0)
|
| 129 |
progress(progress_value, desc=f"Image optimizing, {step + 1}/{optimizing_steps} steps")
|
|
@@ -164,14 +164,14 @@ def generate(
|
|
| 164 |
output_type="latent",
|
| 165 |
callback_on_step_end=callback1
|
| 166 |
).images
|
| 167 |
-
upscaled_latents = utils.upscale(latents, "nearest-exact",
|
| 168 |
images = upscaler_pipe(
|
| 169 |
prompt=prompt,
|
| 170 |
negative_prompt=negative_prompt,
|
| 171 |
image=upscaled_latents,
|
| 172 |
guidance_scale=guidance_scale,
|
| 173 |
num_inference_steps=num_inference_steps,
|
| 174 |
-
strength=
|
| 175 |
generator=generator,
|
| 176 |
output_type="pil",
|
| 177 |
callback_on_step_end=callback2
|
|
@@ -254,15 +254,15 @@ with gr.Blocks(css=custom_css).queue() as demo:
|
|
| 254 |
value=1216,
|
| 255 |
)
|
| 256 |
with gr.Row():
|
| 257 |
-
|
| 258 |
-
label="
|
| 259 |
minimum=0,
|
| 260 |
maximum=1,
|
| 261 |
step=0.05,
|
| 262 |
value=0.55,
|
| 263 |
)
|
| 264 |
-
|
| 265 |
-
label="
|
| 266 |
minimum=1,
|
| 267 |
maximum=1.5,
|
| 268 |
step=0.1,
|
|
@@ -314,7 +314,7 @@ with gr.Blocks(css=custom_css).queue() as demo:
|
|
| 314 |
prompt, negative_prompt,
|
| 315 |
width, height,
|
| 316 |
scheduler,
|
| 317 |
-
|
| 318 |
seed,randomize_seed,
|
| 319 |
guidance_scale,num_inference_steps
|
| 320 |
],
|
|
|
|
| 102 |
width: int,
|
| 103 |
height: int,
|
| 104 |
scheduler: str,
|
| 105 |
+
opt_strength:float,
|
| 106 |
+
opt_scale:float,
|
| 107 |
seed: int,
|
| 108 |
randomize_seed: bool,
|
| 109 |
guidance_scale: float,
|
|
|
|
| 123 |
progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
|
| 124 |
return callback_kwargs
|
| 125 |
|
| 126 |
+
optimizing_steps = int(num_inference_steps * opt_strength)
|
| 127 |
def callback2(pipe, step, timestep, callback_kwargs):
|
| 128 |
progress_value = 0.6 + ((step+1.0)/optimizing_steps)*(0.4/1.0)
|
| 129 |
progress(progress_value, desc=f"Image optimizing, {step + 1}/{optimizing_steps} steps")
|
|
|
|
| 164 |
output_type="latent",
|
| 165 |
callback_on_step_end=callback1
|
| 166 |
).images
|
| 167 |
+
upscaled_latents = utils.upscale(latents, "nearest-exact", opt_scale)
|
| 168 |
images = upscaler_pipe(
|
| 169 |
prompt=prompt,
|
| 170 |
negative_prompt=negative_prompt,
|
| 171 |
image=upscaled_latents,
|
| 172 |
guidance_scale=guidance_scale,
|
| 173 |
num_inference_steps=num_inference_steps,
|
| 174 |
+
strength=opt_strength,
|
| 175 |
generator=generator,
|
| 176 |
output_type="pil",
|
| 177 |
callback_on_step_end=callback2
|
|
|
|
| 254 |
value=1216,
|
| 255 |
)
|
| 256 |
with gr.Row():
|
| 257 |
+
optimization_strength = gr.Slider(
|
| 258 |
+
label="Optimization strength",
|
| 259 |
minimum=0,
|
| 260 |
maximum=1,
|
| 261 |
step=0.05,
|
| 262 |
value=0.55,
|
| 263 |
)
|
| 264 |
+
optimization_scale = gr.Slider(
|
| 265 |
+
label="Optimization scale ratio",
|
| 266 |
minimum=1,
|
| 267 |
maximum=1.5,
|
| 268 |
step=0.1,
|
|
|
|
| 314 |
prompt, negative_prompt,
|
| 315 |
width, height,
|
| 316 |
scheduler,
|
| 317 |
+
optimization_strength,optimization_scale,
|
| 318 |
seed,randomize_seed,
|
| 319 |
guidance_scale,num_inference_steps
|
| 320 |
],
|