animagine-xl-4.0 / utils.py
frogleo's picture
强制改为jpg格式
7cd4941
import gc
import os
import random
import numpy as np
import json
import torch
import uuid
from PIL import Image, PngImagePlugin
from datetime import datetime
from dataclasses import dataclass
from typing import Callable, Dict, Optional, Tuple, Any, List
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
AutoencoderKL,
StableDiffusionXLPipeline,
)
import logging
def load_pipeline(model_name: str, device: torch.device, hf_token: Optional[str] = None, vae: Optional[AutoencoderKL] = None) -> Any:
"""Load the Stable Diffusion pipeline."""
try:
pipeline = (
StableDiffusionXLPipeline.from_single_file
if model_name.endswith(".safetensors")
else StableDiffusionXLPipeline.from_pretrained
)
pipe = pipeline(
model_name,
vae=vae,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
add_watermarker=False
)
pipe.to(device)
return pipe
except Exception as e:
logging.error(f"Failed to load pipeline: {str(e)}", exc_info=True)
raise
def seed_everything(seed: int) -> torch.Generator:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
return generator
def preprocess_image_dimensions(width, height):
if width % 8 != 0:
width = width - (width % 8)
if height % 8 != 0:
height = height - (height % 8)
return width, height
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
scheduler_factory_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(
scheduler_config
),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
}
return scheduler_factory_map.get(name, lambda: None)()
def common_upscale(
samples: torch.Tensor,
width: int,
height: int,
upscale_method: str,
) -> torch.Tensor:
return torch.nn.functional.interpolate(
samples, size=(height, width), mode=upscale_method
)
def upscale(
samples: torch.Tensor, upscale_method: str, scale_by: float
) -> torch.Tensor:
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
return common_upscale(samples, width, height, upscale_method)
def free_memory() -> None:
"""Free up GPU and system memory."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def save_image(image, output_dir):
filename = str(uuid.uuid4()) + ".jpg"
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
image.save(filepath, "JPEG", quality=80)
return filepath