frogleo's picture
强制改为jpg格式
7cd4941
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import random
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
import time
from typing import List, Dict, Tuple, Optional
from config import (
MODEL,
MIN_IMAGE_SIZE,
MAX_IMAGE_SIZE,
DEFAULT_PROMPT,
DEFAULT_NEGATIVE_PROMPT,
scheduler_list,
)
import io
MAX_SEED = np.iinfo(np.int32).max
# Enhanced logging configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# PyTorch settings for better performance and determinism
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Model initialization
if torch.cuda.is_available():
try:
logger.info("Loading VAE and pipeline...")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipe = utils.load_pipeline(MODEL, device, vae=vae)
logger.info("Pipeline loaded successfully on GPU!")
except Exception as e:
logger.error(f"Error loading VAE, falling back to default: {e}")
pipe = utils.load_pipeline(MODEL, device)
else:
logger.warning("CUDA not available, running on CPU")
pipe = None
class GenerationError(Exception):
"""Custom exception for generation errors"""
pass
def validate_prompt(prompt: str) -> str:
"""Validate and clean up the input prompt."""
if not isinstance(prompt, str):
raise GenerationError("Prompt must be a string")
try:
# Ensure proper UTF-8 encoding/decoding
prompt = prompt.encode('utf-8').decode('utf-8')
# Add space between ! and ,
prompt = prompt.replace("!,", "! ,")
except UnicodeError:
raise GenerationError("Invalid characters in prompt")
# Only check if the prompt is completely empty or only whitespace
if not prompt or prompt.isspace():
raise GenerationError("Prompt cannot be empty")
return prompt.strip()
def validate_dimensions(width: int, height: int) -> None:
"""Validate image dimensions."""
if not MIN_IMAGE_SIZE <= width <= MAX_IMAGE_SIZE:
raise GenerationError(f"Width must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
if not MIN_IMAGE_SIZE <= height <= MAX_IMAGE_SIZE:
raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
progress=gr.Progress()
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str,
width: int,
height: int,
scheduler: str,
opt_strength:float,
opt_scale:float,
seed: int,
randomize_seed: bool,
guidance_scale: float,
num_inference_steps: int
):
progress(0,desc="Starting")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
"""Generate images based on the given parameters."""
upscaler_pipe = None
backup_scheduler = None
def callback1(pipe, step, timestep, callback_kwargs):
progress_value = 0.1 + ((step+1.0)/num_inference_steps)*(0.5/1.0)
progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
return callback_kwargs
optimizing_steps = int(num_inference_steps * opt_strength)
def callback2(pipe, step, timestep, callback_kwargs):
progress_value = 0.6 + ((step+1.0)/optimizing_steps)*(0.4/1.0)
progress(progress_value, desc=f"Image optimizing, {step + 1}/{optimizing_steps} steps")
return callback_kwargs
try:
# Memory management
torch.cuda.empty_cache()
gc.collect()
# Input validation
prompt = validate_prompt(prompt)
if negative_prompt:
negative_prompt = negative_prompt.encode('utf-8').decode('utf-8')
validate_dimensions(width, height)
# Set up generation
generator = utils.seed_everything(seed)
width, height = utils.preprocess_image_dimensions(width, height)
# Set up pipeline
backup_scheduler = pipe.scheduler
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, scheduler)
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
progress(0.1,desc="Image generating")
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent",
callback_on_step_end=callback1
).images
upscaled_latents = utils.upscale(latents, "nearest-exact", opt_scale)
images = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_latents,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=opt_strength,
generator=generator,
output_type="pil",
callback_on_step_end=callback2
).images
out_img = images[0]
path = utils.save_image(out_img, "./outputs")
logger.info(f"output path: {path}")
progress(1, desc="Complete")
return path
except GenerationError as e:
logger.warning(f"Generation validation error: {str(e)}")
raise gr.Error(str(e))
except Exception as e:
logger.exception("Unexpected error during generation")
raise gr.Error(f"Generation failed: {str(e)}")
finally:
# Cleanup
torch.cuda.empty_cache()
gc.collect()
if upscaler_pipe is not None:
del upscaler_pipe
if backup_scheduler is not None and pipe is not None:
pipe.scheduler = backup_scheduler
utils.free_memory()
title = "# Animagine XL 4.0 Demo"
custom_css = """
#row-container {
align-items: stretch;
}
#output-image{
flex-grow: 1;
}
#output-image *{
max-height: none !important;
}
"""
with gr.Blocks(css=custom_css).queue() as demo:
gr.Markdown(title)
with gr.Row(
elem_id="row-container"
):
with gr.Column():
gr.Markdown("### Input")
with gr.Column():
prompt = gr.Text(
label="Prompt",
max_lines=5,
placeholder="Enter your prompt",
value=DEFAULT_PROMPT,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
placeholder="Enter a negative prompt",
value=DEFAULT_NEGATIVE_PROMPT,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=832,
)
height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1216,
)
with gr.Row():
optimization_strength = gr.Slider(
label="Optimization strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
)
optimization_scale = gr.Slider(
label="Optimization scale ratio",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
)
with gr.Column():
scheduler = gr.Dropdown(
label="scheduler",
choices=scheduler_list,
interactive=True,
value="Euler a",
)
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=12.0,
step=0.1,
value=6.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
run_button = gr.Button("Run", variant="primary")
with gr.Column():
gr.Markdown("### Output")
result = gr.Image(
type="filepath",
label="Generated Image",
elem_id="output-image"
)
run_button.click(
fn=generate,
inputs=[
prompt, negative_prompt,
width, height,
scheduler,
optimization_strength,optimization_scale,
seed,randomize_seed,
guidance_scale,num_inference_steps
],
outputs=[result],
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()