Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,113 Bytes
4eacf35 393a8b0 4eacf35 781a759 4eacf35 781a759 4eacf35 781a759 4eacf35 a278c66 bfedece a278c66 0dce70d 393a8b0 a278c66 781a759 6aefd85 a278c66 6aefd85 a278c66 6aefd85 781a759 4eacf35 92ba34d 781a759 07e3db2 781a759 92ba34d 393a8b0 92ba34d 393a8b0 4eacf35 393a8b0 92ba34d 07e3db2 92ba34d 752a370 92ba34d 4eacf35 393a8b0 b82c0ac 92ba34d 23063b3 92ba34d 23063b3 07e3db2 23063b3 07e3db2 23063b3 92ba34d 23063b3 0dce70d 7cd4941 629d861 7cd4941 4eacf35 393a8b0 4eacf35 393a8b0 781a759 393a8b0 4cce1bb 393a8b0 781a759 a278c66 781a759 bfedece 781a759 a278c66 781a759 a278c66 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 07e3db2 781a759 07e3db2 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 7cd4941 781a759 393a8b0 781a759 07e3db2 781a759 4eacf35 781a759 393a8b0 6aefd85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import random
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
import time
from typing import List, Dict, Tuple, Optional
from config import (
MODEL,
MIN_IMAGE_SIZE,
MAX_IMAGE_SIZE,
DEFAULT_PROMPT,
DEFAULT_NEGATIVE_PROMPT,
scheduler_list,
)
import io
MAX_SEED = np.iinfo(np.int32).max
# Enhanced logging configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# PyTorch settings for better performance and determinism
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Model initialization
if torch.cuda.is_available():
try:
logger.info("Loading VAE and pipeline...")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipe = utils.load_pipeline(MODEL, device, vae=vae)
logger.info("Pipeline loaded successfully on GPU!")
except Exception as e:
logger.error(f"Error loading VAE, falling back to default: {e}")
pipe = utils.load_pipeline(MODEL, device)
else:
logger.warning("CUDA not available, running on CPU")
pipe = None
class GenerationError(Exception):
"""Custom exception for generation errors"""
pass
def validate_prompt(prompt: str) -> str:
"""Validate and clean up the input prompt."""
if not isinstance(prompt, str):
raise GenerationError("Prompt must be a string")
try:
# Ensure proper UTF-8 encoding/decoding
prompt = prompt.encode('utf-8').decode('utf-8')
# Add space between ! and ,
prompt = prompt.replace("!,", "! ,")
except UnicodeError:
raise GenerationError("Invalid characters in prompt")
# Only check if the prompt is completely empty or only whitespace
if not prompt or prompt.isspace():
raise GenerationError("Prompt cannot be empty")
return prompt.strip()
def validate_dimensions(width: int, height: int) -> None:
"""Validate image dimensions."""
if not MIN_IMAGE_SIZE <= width <= MAX_IMAGE_SIZE:
raise GenerationError(f"Width must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
if not MIN_IMAGE_SIZE <= height <= MAX_IMAGE_SIZE:
raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
progress=gr.Progress()
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str,
width: int,
height: int,
scheduler: str,
opt_strength:float,
opt_scale:float,
seed: int,
randomize_seed: bool,
guidance_scale: float,
num_inference_steps: int
):
progress(0,desc="Starting")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
"""Generate images based on the given parameters."""
upscaler_pipe = None
backup_scheduler = None
def callback1(pipe, step, timestep, callback_kwargs):
progress_value = 0.1 + ((step+1.0)/num_inference_steps)*(0.5/1.0)
progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
return callback_kwargs
optimizing_steps = int(num_inference_steps * opt_strength)
def callback2(pipe, step, timestep, callback_kwargs):
progress_value = 0.6 + ((step+1.0)/optimizing_steps)*(0.4/1.0)
progress(progress_value, desc=f"Image optimizing, {step + 1}/{optimizing_steps} steps")
return callback_kwargs
try:
# Memory management
torch.cuda.empty_cache()
gc.collect()
# Input validation
prompt = validate_prompt(prompt)
if negative_prompt:
negative_prompt = negative_prompt.encode('utf-8').decode('utf-8')
validate_dimensions(width, height)
# Set up generation
generator = utils.seed_everything(seed)
width, height = utils.preprocess_image_dimensions(width, height)
# Set up pipeline
backup_scheduler = pipe.scheduler
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, scheduler)
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
progress(0.1,desc="Image generating")
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent",
callback_on_step_end=callback1
).images
upscaled_latents = utils.upscale(latents, "nearest-exact", opt_scale)
images = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_latents,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=opt_strength,
generator=generator,
output_type="pil",
callback_on_step_end=callback2
).images
out_img = images[0]
path = utils.save_image(out_img, "./outputs")
logger.info(f"output path: {path}")
progress(1, desc="Complete")
return path
except GenerationError as e:
logger.warning(f"Generation validation error: {str(e)}")
raise gr.Error(str(e))
except Exception as e:
logger.exception("Unexpected error during generation")
raise gr.Error(f"Generation failed: {str(e)}")
finally:
# Cleanup
torch.cuda.empty_cache()
gc.collect()
if upscaler_pipe is not None:
del upscaler_pipe
if backup_scheduler is not None and pipe is not None:
pipe.scheduler = backup_scheduler
utils.free_memory()
title = "# Animagine XL 4.0 Demo"
custom_css = """
#row-container {
align-items: stretch;
}
#output-image{
flex-grow: 1;
}
#output-image *{
max-height: none !important;
}
"""
with gr.Blocks(css=custom_css).queue() as demo:
gr.Markdown(title)
with gr.Row(
elem_id="row-container"
):
with gr.Column():
gr.Markdown("### Input")
with gr.Column():
prompt = gr.Text(
label="Prompt",
max_lines=5,
placeholder="Enter your prompt",
value=DEFAULT_PROMPT,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
placeholder="Enter a negative prompt",
value=DEFAULT_NEGATIVE_PROMPT,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=832,
)
height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1216,
)
with gr.Row():
optimization_strength = gr.Slider(
label="Optimization strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
)
optimization_scale = gr.Slider(
label="Optimization scale ratio",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
)
with gr.Column():
scheduler = gr.Dropdown(
label="scheduler",
choices=scheduler_list,
interactive=True,
value="Euler a",
)
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=12.0,
step=0.1,
value=6.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
run_button = gr.Button("Run", variant="primary")
with gr.Column():
gr.Markdown("### Output")
result = gr.Image(
type="filepath",
label="Generated Image",
elem_id="output-image"
)
run_button.click(
fn=generate,
inputs=[
prompt, negative_prompt,
width, height,
scheduler,
optimization_strength,optimization_scale,
seed,randomize_seed,
guidance_scale,num_inference_steps
],
outputs=[result],
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |