File size: 10,113 Bytes
4eacf35
 
393a8b0
 
 
4eacf35
 
781a759
4eacf35
781a759
4eacf35
 
 
781a759
4eacf35
 
 
a278c66
 
 
 
bfedece
a278c66
 
 
0dce70d
393a8b0
 
a278c66
781a759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aefd85
 
 
 
 
 
 
a278c66
6aefd85
 
 
a278c66
6aefd85
 
 
781a759
 
4eacf35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ba34d
781a759
 
 
 
 
 
 
 
07e3db2
 
781a759
 
 
92ba34d
393a8b0
92ba34d
 
393a8b0
 
4eacf35
 
 
 
393a8b0
92ba34d
 
 
 
 
07e3db2
92ba34d
752a370
 
92ba34d
 
4eacf35
 
 
 
393a8b0
b82c0ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ba34d
23063b3
 
 
 
 
 
 
 
 
92ba34d
23063b3
07e3db2
23063b3
 
 
 
 
 
07e3db2
23063b3
 
92ba34d
23063b3
0dce70d
7cd4941
 
629d861
7cd4941
4eacf35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393a8b0
 
4eacf35
393a8b0
781a759
 
 
 
 
 
 
 
 
 
393a8b0
4cce1bb
 
 
393a8b0
 
 
781a759
 
 
 
 
 
 
 
 
 
a278c66
781a759
bfedece
781a759
 
 
a278c66
781a759
a278c66
781a759
393a8b0
 
 
781a759
393a8b0
781a759
 
393a8b0
 
 
781a759
393a8b0
781a759
 
393a8b0
781a759
07e3db2
 
781a759
 
 
 
 
07e3db2
 
781a759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393a8b0
 
 
781a759
 
393a8b0
781a759
393a8b0
 
 
 
 
 
 
781a759
393a8b0
781a759
393a8b0
781a759
 
 
7cd4941
781a759
 
 
 
 
393a8b0
781a759
 
 
07e3db2
781a759
 
 
4eacf35
781a759
393a8b0
6aefd85
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import random
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
import time
from typing import List, Dict, Tuple, Optional
from config import (
    MODEL,
    MIN_IMAGE_SIZE,
    MAX_IMAGE_SIZE,
    DEFAULT_PROMPT,
    DEFAULT_NEGATIVE_PROMPT,
    scheduler_list,
)
import io

MAX_SEED = np.iinfo(np.int32).max


# Enhanced logging configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)

# PyTorch settings for better performance and determinism
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")

# Model initialization
if torch.cuda.is_available():
    try:
        logger.info("Loading VAE and pipeline...")
        vae = AutoencoderKL.from_pretrained(
            "madebyollin/sdxl-vae-fp16-fix",
            torch_dtype=torch.float16,
        )
        pipe = utils.load_pipeline(MODEL, device, vae=vae)
        logger.info("Pipeline loaded successfully on GPU!")
    except Exception as e:
        logger.error(f"Error loading VAE, falling back to default: {e}")
        pipe = utils.load_pipeline(MODEL, device)
else:
    logger.warning("CUDA not available, running on CPU")
    pipe = None


class GenerationError(Exception):
    """Custom exception for generation errors"""
    pass

def validate_prompt(prompt: str) -> str:
    """Validate and clean up the input prompt."""
    if not isinstance(prompt, str):
        raise GenerationError("Prompt must be a string")
    try:
        # Ensure proper UTF-8 encoding/decoding
        prompt = prompt.encode('utf-8').decode('utf-8')
        # Add space between ! and ,
        prompt = prompt.replace("!,", "! ,")
    except UnicodeError:
        raise GenerationError("Invalid characters in prompt")
    
    # Only check if the prompt is completely empty or only whitespace
    if not prompt or prompt.isspace():
        raise GenerationError("Prompt cannot be empty")
    return prompt.strip()

def validate_dimensions(width: int, height: int) -> None:
    """Validate image dimensions."""
    if not MIN_IMAGE_SIZE <= width <= MAX_IMAGE_SIZE:
        raise GenerationError(f"Width must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
        
    if not MIN_IMAGE_SIZE <= height <= MAX_IMAGE_SIZE:
        raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")



progress=gr.Progress()

@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str,
    width: int,
    height: int,
    scheduler: str,
    opt_strength:float,
    opt_scale:float,
    seed: int,
    randomize_seed: bool,
    guidance_scale: float,
    num_inference_steps: int
):
    progress(0,desc="Starting")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    """Generate images based on the given parameters."""
    upscaler_pipe = None
    backup_scheduler = None

    def callback1(pipe, step, timestep, callback_kwargs):
        progress_value = 0.1 + ((step+1.0)/num_inference_steps)*(0.5/1.0)
        progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
        return callback_kwargs
    
    optimizing_steps = int(num_inference_steps * opt_strength)
    def callback2(pipe, step, timestep, callback_kwargs):
        progress_value = 0.6 + ((step+1.0)/optimizing_steps)*(0.4/1.0)
        progress(progress_value, desc=f"Image optimizing, {step + 1}/{optimizing_steps} steps")
        return callback_kwargs

    try:
        # Memory management
        torch.cuda.empty_cache()
        gc.collect()

         # Input validation
        prompt = validate_prompt(prompt)
        if negative_prompt:
            negative_prompt = negative_prompt.encode('utf-8').decode('utf-8')
        
        validate_dimensions(width, height)

        # Set up generation
        generator = utils.seed_everything(seed)

        width, height = utils.preprocess_image_dimensions(width, height)

        # Set up pipeline
        backup_scheduler = pipe.scheduler
        pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, scheduler)

        upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)

        progress(0.1,desc="Image generating")
        latents = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator,
                output_type="latent",
                callback_on_step_end=callback1
            ).images
        upscaled_latents = utils.upscale(latents, "nearest-exact", opt_scale)
        images = upscaler_pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                image=upscaled_latents,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                strength=opt_strength,
                generator=generator,
                output_type="pil",
                callback_on_step_end=callback2
            ).images
        out_img = images[0] 
        path = utils.save_image(out_img, "./outputs")
        logger.info(f"output path: {path}")
        progress(1, desc="Complete")
        return path
    except GenerationError as e:
        logger.warning(f"Generation validation error: {str(e)}")
        raise gr.Error(str(e))
    except Exception as e:
        logger.exception("Unexpected error during generation")
        raise gr.Error(f"Generation failed: {str(e)}")
    finally:
        # Cleanup
        torch.cuda.empty_cache()
        gc.collect()
        
        if upscaler_pipe is not None:
            del upscaler_pipe
        
        if backup_scheduler is not None and pipe is not None:
            pipe.scheduler = backup_scheduler
            
        utils.free_memory()


   



title = "# Animagine XL 4.0 Demo"

custom_css = """
#row-container {
    align-items: stretch;
}
#output-image{
    flex-grow: 1;
}
#output-image *{
    max-height: none !important;
}
"""


with gr.Blocks(css=custom_css).queue() as demo:
    gr.Markdown(title)
    with gr.Row(
        elem_id="row-container"
    ):
        with gr.Column():
            gr.Markdown("### Input")
            with gr.Column():
                prompt = gr.Text(
                    label="Prompt",
                    max_lines=5,
                    placeholder="Enter your prompt",
                    value=DEFAULT_PROMPT,
                )
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=5,
                    placeholder="Enter a negative prompt",
                    value=DEFAULT_NEGATIVE_PROMPT,
                )
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=832,  
                )
                height = gr.Slider(
                    label="Height",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1216, 
                )
            with gr.Row():
                optimization_strength = gr.Slider(
                    label="Optimization strength",
                    minimum=0,
                    maximum=1,
                    step=0.05,
                    value=0.55,  
                )
                optimization_scale = gr.Slider(
                    label="Optimization scale ratio",
                    minimum=1,
                    maximum=1.5,
                    step=0.1,
                    value=1.5, 
                )
            with gr.Column():
                scheduler = gr.Dropdown(
                            label="scheduler",
                            choices=scheduler_list,
                            interactive=True,
                            value="Euler a",
                        )
            with gr.Column():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1.0,
                    maximum=12.0,
                    step=0.1,
                    value=6.0, 
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=25, 
                )
            run_button = gr.Button("Run", variant="primary")

        with gr.Column():
            gr.Markdown("### Output")
            result = gr.Image(
                type="filepath",
                label="Generated Image",
                elem_id="output-image"
            )
    run_button.click(
        fn=generate,
        inputs=[
            prompt, negative_prompt,
            width, height, 
            scheduler,
            optimization_strength,optimization_scale,
            seed,randomize_seed,
            guidance_scale,num_inference_steps
            ], 
        outputs=[result],
    )  

if __name__ == "__main__":
    demo.queue(max_size=20).launch()