Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,973 Bytes
781a759 393a8b0 781a759 393a8b0 781a759 6aefd85 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 781a759 393a8b0 6aefd85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import spaces
import gradio as gr
import numpy as np
import torch
import random
import logging
import utils
from diffusers.models import AutoencoderKL
MAX_SEED = np.iinfo(np.int32).max
MIN_IMAGE_SIZE = 512
MAX_IMAGE_SIZE = 2048
# Enhanced logging configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# PyTorch settings for better performance and determinism
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Model initialization
if torch.cuda.is_available():
try:
logger.info("Loading VAE and pipeline...")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipe = utils.load_pipeline("cagliostrolab/animagine-xl-4.0", device, vae=vae)
logger.info("Pipeline loaded successfully on GPU!")
except Exception as e:
logger.error(f"Error loading VAE, falling back to default: {e}")
pipe = utils.load_pipeline("cagliostrolab/animagine-xl-4.0", device)
else:
logger.warning("CUDA not available, running on CPU")
pipe = None
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str,
width: int,
height: int,
scheduler: str,
upscaler_strength:float,
upscale_by:float,
seed: int,
randomize_seed: bool,
guidance_scale: float,
num_inference_steps: int,
progress:gr.Progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
# return image, seed
return None, seed
scheduler_list = [
"DPM++ 2M Karras",
"DPM++ SDE Karras",
"DPM++ 2M SDE Karras",
"Euler",
"Euler a",
"DDIM"
]
title = "# Animagine XL 4.0 Demo"
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
custom_css = """
#row-container {
align-items: stretch;
}
#output-image{
flex-grow: 1;
}
"""
with gr.Blocks(css=custom_css).queue() as demo:
gr.Markdown(title)
with gr.Row(
elem_id="row-container"
):
with gr.Column():
gr.Markdown("### Input")
with gr.Column():
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=832,
)
height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1216,
)
with gr.Row():
upscaler_strength = gr.Slider(
label="Upscaler strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
)
upscale_by = gr.Slider(
label="Upscale",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
)
with gr.Column():
scheduler = gr.Dropdown(
label="scheduler",
choices=scheduler_list,
interactive=True,
value="Euler a",
)
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=12.0,
step=0.1,
value=6.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
run_button = gr.Button("Run", variant="primary")
with gr.Column():
gr.Markdown("### Output")
result = gr.Image(
label="Generated Image",
elem_id="output-image"
)
run_button.click(
fn=generate,
inputs=[
prompt, negative_prompt,
width, height,
scheduler,
upscaler_strength,upscale_by,
seed,randomize_seed,
guidance_scale,num_inference_steps
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |