File size: 5,973 Bytes
781a759
393a8b0
 
 
781a759
 
 
 
393a8b0
 
781a759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aefd85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781a759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393a8b0
 
 
 
781a759
 
 
 
 
 
 
 
 
 
 
393a8b0
781a759
393a8b0
781a759
393a8b0
 
781a759
 
 
 
 
 
 
 
 
 
 
 
 
393a8b0
 
 
 
 
 
781a759
 
 
 
 
 
393a8b0
 
 
 
781a759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393a8b0
 
 
781a759
393a8b0
781a759
 
393a8b0
 
 
781a759
393a8b0
781a759
 
393a8b0
781a759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393a8b0
 
 
781a759
 
393a8b0
781a759
393a8b0
 
 
 
 
 
 
781a759
393a8b0
781a759
393a8b0
781a759
 
 
 
 
 
 
 
393a8b0
781a759
 
 
 
 
 
 
393a8b0
781a759
393a8b0
6aefd85
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import spaces
import gradio as gr
import numpy as np
import torch
import random
import logging
import utils
from diffusers.models import AutoencoderKL

MAX_SEED = np.iinfo(np.int32).max
MIN_IMAGE_SIZE = 512
MAX_IMAGE_SIZE = 2048

# Enhanced logging configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)

# PyTorch settings for better performance and determinism
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")

# Model initialization
if torch.cuda.is_available():
    try:
        logger.info("Loading VAE and pipeline...")
        vae = AutoencoderKL.from_pretrained(
            "madebyollin/sdxl-vae-fp16-fix",
            torch_dtype=torch.float16,
        )
        pipe = utils.load_pipeline("cagliostrolab/animagine-xl-4.0", device, vae=vae)
        logger.info("Pipeline loaded successfully on GPU!")
    except Exception as e:
        logger.error(f"Error loading VAE, falling back to default: {e}")
        pipe = utils.load_pipeline("cagliostrolab/animagine-xl-4.0", device)
else:
    logger.warning("CUDA not available, running on CPU")
    pipe = None



@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str,
    width: int,
    height: int,
    scheduler: str,
    upscaler_strength:float,
    upscale_by:float,
    seed: int,
    randomize_seed: bool,
    guidance_scale: float,
    num_inference_steps: int,
    progress:gr.Progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # generator = torch.Generator().manual_seed(seed)

    # image = pipe(
    #     prompt=prompt,
    #     negative_prompt=negative_prompt,
    #     guidance_scale=guidance_scale,
    #     num_inference_steps=num_inference_steps,
    #     width=width,
    #     height=height,
    #     generator=generator,
    # ).images[0]

    # return image, seed

    return None, seed



scheduler_list = [
    "DPM++ 2M Karras",
    "DPM++ SDE Karras",
    "DPM++ 2M SDE Karras",
    "Euler",
    "Euler a",
    "DDIM"
]


title = "# Animagine XL 4.0 Demo"

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

custom_css = """
#row-container {
    align-items: stretch;
}
#output-image{
    flex-grow: 1;
}
"""


with gr.Blocks(css=custom_css).queue() as demo:
    gr.Markdown(title)
    with gr.Row(
        elem_id="row-container"
    ):
        with gr.Column():
            gr.Markdown("### Input")
            with gr.Column():
                prompt = gr.Text(
                    label="Prompt",
                    max_lines=1,
                    placeholder="Enter your prompt",
                )
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                )
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=832,  
                )
                height = gr.Slider(
                    label="Height",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1216, 
                )
            with gr.Row():
                upscaler_strength = gr.Slider(
                    label="Upscaler strength",
                    minimum=0,
                    maximum=1,
                    step=0.05,
                    value=0.55,  
                )
                upscale_by = gr.Slider(
                    label="Upscale",
                    minimum=1,
                    maximum=1.5,
                    step=0.1,
                    value=1.5, 
                )
            with gr.Column():
                scheduler = gr.Dropdown(
                            label="scheduler",
                            choices=scheduler_list,
                            interactive=True,
                            value="Euler a",
                        )
            with gr.Column():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1.0,
                    maximum=12.0,
                    step=0.1,
                    value=6.0, 
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=25, 
                )
            run_button = gr.Button("Run", variant="primary")

        with gr.Column():
            gr.Markdown("### Output")
            result = gr.Image(
                label="Generated Image",
                elem_id="output-image"
            )
    run_button.click(
        fn=generate,
        inputs=[
            prompt, negative_prompt,
            width, height, 
            scheduler,
            upscaler_strength,upscale_by,
            seed,randomize_seed,
            guidance_scale,num_inference_steps
            ], 
        outputs=[result, seed],
    )  

if __name__ == "__main__":
    demo.queue(max_size=20).launch()