import os
import spaces
import random
import shutil
import gradio as gr
from glob import glob
from pathlib import Path
import uuid
import argparse
import torch
import trimesh
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo')
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mc_algo', type=str, default='mc')
parser.add_argument('--cache_path', type=str, default='gradio_cache')
parser.add_argument('--enable_t23d', action='store_true')
parser.add_argument('--disable_tex', action='store_true')
parser.add_argument('--enable_flashvdm', action='store_true')
parser.add_argument('--compile', action='store_true')
parser.add_argument('--low_vram_mode', action='store_true')
args = parser.parse_args()
args.enable_flashvdm = True
SAVE_DIR = args.cache_path
os.makedirs(SAVE_DIR, exist_ok=True)
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
HTML_HEIGHT = 690
HTML_WIDTH = 500
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def gen_save_folder(max_size=200):
os.makedirs(SAVE_DIR, exist_ok=True)
# 获取所有文件夹路径
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
if len(dirs) >= max_size:
# 按创建时间排序,最久的排在前面
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
shutil.rmtree(oldest_dir)
print(f"Removed the oldest folder: {oldest_dir}")
# 生成一个新的 uuid 文件夹名称
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
os.makedirs(new_folder, exist_ok=True)
print(f"Created new folder: {new_folder}")
return new_folder
def export_mesh(mesh, save_folder, textured=False, type='glb'):
if textured:
path = os.path.join(save_folder, f'textured_mesh.{type}')
else:
path = os.path.join(save_folder, f'white_mesh.{type}')
if type not in ['glb', 'obj']:
mesh.export(path)
else:
mesh.export(path, include_normals=textured)
return path
def build_model_viewer_html(save_folder, height=660, width=790, textured=False):
# Remove first folder from path to make relative path
if textured:
related_path = f"./textured_mesh.glb"
template_name = './assets/modelviewer-textured-template.html'
output_html_path = os.path.join(save_folder, f'textured_mesh.html')
else:
related_path = f"./white_mesh.glb"
template_name = './assets/modelviewer-template.html'
output_html_path = os.path.join(save_folder, f'white_mesh.html')
offset = 50 if textured else 10
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f:
template_html = f.read()
with open(output_html_path, 'w', encoding='utf-8') as f:
template_html = template_html.replace('#height#', f'{height - offset}')
template_html = template_html.replace('#width#', f'{width}')
template_html = template_html.replace('#src#', f'{related_path}/')
f.write(template_html)
rel_path = os.path.relpath(output_html_path, SAVE_DIR)
iframe_tag = f''
print(
f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}')
return f"""
{iframe_tag}
"""
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.shapegen.pipelines import export_to_trimesh
from hy3dgen.rembg import BackgroundRemover
rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
args.model_path,
subfolder=args.subfolder,
use_safetensors=True,
device=args.device,
)
if args.enable_flashvdm:
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
if args.compile:
i23d_worker.compile()
floater_remove_worker = FloaterRemover()
degenerate_face_remove_worker = DegenerateFaceRemover()
face_reduce_worker = FaceReducer()
progress=gr.Progress()
@spaces.GPU(duration=60)
def gen_shape(
image=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
num_chunks=200000,
target_face_num=10000,
randomize_seed: bool = False,
):
progress(0,desc="Starting")
def callback(step_idx, timestep, outputs):
progress_value = ((step_idx+1.0)/steps)*(0.5/1.0)
progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps")
if image is None:
raise gr.Error("Please provide either a caption or an image.")
seed = int(randomize_seed_fn(seed, randomize_seed))
octree_resolution = int(octree_resolution)
save_folder = gen_save_folder()
# 先移除背景
image = rmbg_worker(image.convert('RGB'))
# 生成模型
generator = torch.Generator()
generator = generator.manual_seed(int(seed))
outputs = i23d_worker(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution,
num_chunks=num_chunks,
output_type='mesh',
callback=callback,
callback_steps=1
)
mesh = export_to_trimesh(outputs)[0]
path = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH)
return model_viewer_html, path
# if args.low_vram_mode:
# torch.cuda.empty_cache()
# if path is None:
# raise gr.Error('Please generate a mesh first.')
# # 简化模型
# print(f'exporting {path}')
# print(f'reduce face to {target_face_num}')
# mesh = trimesh.load(path)
# progress(0.5,desc="Optimizing mesh")
# mesh = floater_remove_worker(mesh)
# mesh = degenerate_face_remove_worker(mesh)
# progress(0.6,desc="Reducing mesh faces")
# mesh = face_reduce_worker(mesh, target_face_num)
# save_folder = gen_save_folder()
# file_type = "obj"
# path = export_mesh(mesh, save_folder, textured=False, type=file_type)
# # for preview
# save_folder = gen_save_folder()
# _ = export_mesh(mesh, save_folder, textured=False)
# model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, textured=False)
# progress(1,desc="Complete")
# return model_viewer_html, path
def get_example_img_list():
print('Loading example img list ...')
return sorted(glob('./assets/example_images/**/*.png', recursive=True))
example_imgs = get_example_img_list()
HTML_OUTPUT_PLACEHOLDER = f"""
"""
MAX_SEED = 1e7
title = "## Image to 3D"
description = "A lightweight image to 3D converter"
with gr.Blocks().queue() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("#### Image Prompt")
image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
gen_button = gr.Button(value='Generate Shape', variant='primary')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=1234,
min_width=100,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
with gr.Column():
cfg_scale = gr.Slider(maximum=20.0, minimum=1.0, value=5.5, step=0.1, label='Guidance Scale')
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, label='Number of Chunks')
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, label='Target Face Number')
with gr.Column(scale=6):
gr.Markdown("#### Generated Mesh")
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
path_output = gr.Textbox(label="Mesh Path")
with gr.Column(scale=3):
gr.Markdown("#### Image Examples")
gr.Examples(examples=example_imgs, inputs=[image],
label=None, examples_per_page=18)
gen_button.click(
fn=gen_shape,
inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed],
outputs=[html_export_mesh, path_output]
)
demo.launch()