import os import spaces import random import shutil import gradio as gr from glob import glob from pathlib import Path import uuid import argparse import torch parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini') parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo') parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2') parser.add_argument('--port', type=int, default=7860) parser.add_argument('--host', type=str, default='0.0.0.0') parser.add_argument('--device', type=str, default='cuda') parser.add_argument('--mc_algo', type=str, default='mc') parser.add_argument('--cache_path', type=str, default='gradio_cache') parser.add_argument('--enable_t23d', action='store_true') parser.add_argument('--disable_tex', action='store_true') parser.add_argument('--enable_flashvdm', action='store_true') parser.add_argument('--compile', action='store_true') parser.add_argument('--low_vram_mode', action='store_true') args = parser.parse_args() args.enable_flashvdm = True SAVE_DIR = args.cache_path os.makedirs(SAVE_DIR, exist_ok=True) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def gen_save_folder(max_size=200): os.makedirs(SAVE_DIR, exist_ok=True) # 获取所有文件夹路径 dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()] # 如果文件夹数量超过 max_size,删除创建时间最久的文件夹 if len(dirs) >= max_size: # 按创建时间排序,最久的排在前面 oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime) shutil.rmtree(oldest_dir) print(f"Removed the oldest folder: {oldest_dir}") # 生成一个新的 uuid 文件夹名称 new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4())) os.makedirs(new_folder, exist_ok=True) print(f"Created new folder: {new_folder}") return new_folder from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \ Hunyuan3DDiTFlowMatchingPipeline from hy3dgen.rembg import BackgroundRemover rmbg_worker = BackgroundRemover() i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained( args.model_path, subfolder=args.subfolder, use_safetensors=True, device=args.device, ) if args.enable_flashvdm: mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo i23d_worker.enable_flashvdm(mc_algo=mc_algo) if args.compile: i23d_worker.compile() progress=gr.Progress() @spaces.GPU(duration=60) def gen_shape( image=None, steps=50, guidance_scale=7.5, seed=1234, octree_resolution=256, num_chunks=200000, target_face_num=10000, randomize_seed: bool = False, ): def callback(step_idx, timestep, outputs): progress_value = (step_idx+1.0)/steps progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps") if image is None: raise gr.Error("Please provide either a caption or an image.") seed = int(randomize_seed_fn(seed, randomize_seed)) octree_resolution = int(octree_resolution) save_folder = gen_save_folder() image = rmbg_worker(image.convert('RGB')) generator = torch.Generator() generator = generator.manual_seed(int(seed)) outputs = i23d_worker( image=image, num_inference_steps=steps, guidance_scale=guidance_scale, generator=generator, octree_resolution=octree_resolution, num_chunks=num_chunks, output_type='mesh', callback=callback ) print(outputs) def get_example_img_list(): print('Loading example img list ...') return sorted(glob('./assets/example_images/**/*.png', recursive=True)) example_imgs = get_example_img_list() HTML_OUTPUT_PLACEHOLDER = f"""

No mesh here.

""" MAX_SEED = 1e7 title = "## Image to 3D" description = "A lightweight image to 3D converter" with gr.Blocks().queue() as demo: gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(scale=3): gr.Markdown("#### Image Prompt") image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290) gen_button = gr.Button(value='Generate Shape', variant='primary') with gr.Accordion("Advanced Options", open=False): with gr.Column(): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=1234, min_width=100, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Column(): num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps') octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution') with gr.Column(): cfg_scale = gr.Slider(maximum=20.0, minimum=1.0, value=5.5, step=0.1, label='Guidance Scale') num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, label='Number of Chunks') target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, label='Target Face Number') with gr.Column(scale=6): gr.Markdown("#### Generated Mesh") html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') with gr.Column(scale=3): gr.Markdown("#### Image Examples") gr.Examples(examples=example_imgs, inputs=[image], label=None, examples_per_page=18) gen_button.click( fn=gen_shape, inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed], outputs=[html_export_mesh] ) demo.launch()