import os os.system("git clone https://github.com/google-research/frame-interpolation") import sys sys.path.append("frame-interpolation") import math import cv2 import numpy as np import tensorflow as tf import mediapy from PIL import Image import gradio as gr from huggingface_hub import snapshot_download from image_tools.sizes import resize_and_crop model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style") from eval import interpolator, util interpolator = interpolator.Interpolator(model, None) ffmpeg_path = util.get_ffmpeg_path() mediapy.set_ffmpeg(ffmpeg_path) def do_interpolation(frame1, frame2, interpolation, n): print("tween frames: " + str(interpolation)) print(frame1, frame2) input_frames = [frame1, frame2] frames = list( util.interpolate_recursively_from_files( input_frames, int(interpolation), interpolator)) #print(frames) mediapy.write_video(f"{n}_to_{n+1}_out.mp4", frames, fps=25) return f"{n}_to_{n+1}_out.mp4" def get_frames(video_in, step, name, n): frames = [] cap = cv2.VideoCapture(video_in) cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cfps = int(cap.get(cv2.CAP_PROP_FPS)) print(f'frames: {cframes}, fps: {cfps}') #resize the video #clip = VideoFileClip(video_in) #check fps #if cfps > 25: # print("video rate is over 25, resetting to 25") # clip_resized = clip.resize(height=1024) # clip_resized.write_videofile("video_resized.mp4", fps=25) #else: # print("video rate is OK") # clip_resized = clip.resize(height=1024) # clip_resized.write_videofile("video_resized.mp4", fps=cfps) #print("video resized to 1024 height") # Opens the Video file with CV2 #cap = cv2.VideoCapture("video_resized.mp4") fps = cap.get(cv2.CAP_PROP_FPS) print("video fps: " + str(fps)) i=0 while(cap.isOpened()): ret, frame = cap.read() if ret == False: break #if resize_w > 0: #resize_h = resize_w / 2.0 #frame = cv2.resize(frame, (int(resize_w), int(resize_h))) cv2.imwrite(f"{str(n)}_{name}_{step}{str(i)}.png", frame) frames.append(f"{str(n)}_{name}_{step}{str(i)}.png") i+=1 cap.release() cv2.destroyAllWindows() print("broke the video into frames") return frames, fps def create_video(frames, fps, type): print("building video result") imgs = [] for j, img in enumerate(frames): imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB)) mediapy.write_video(type + "_result.mp4", imgs, fps=fps) return type + "_result.mp4" def infer(f_in, interpolation, fps_output): fps_output = logscale(fps_output) # 1. break video into frames and get FPS #break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n) frames_list = f_in #break_vid[0] fps = 1 #break_vid[1] print(f"ORIGIN FPS: {fps}") n_frame = int(300) #limited to 300 frames #n_frame = len(frames_list) if n_frame >= len(frames_list): print("video is shorter than the cut value") n_frame = len(frames_list) # 2. prepare frames result arrays result_frames = [] print("set stop frames to: " + str(n_frame)) for idx, frame in enumerate(frames_list[0:int(n_frame)]): if idx < len(frames_list) - 1: next_frame = frames_list[idx+1] interpolated_frames = do_interpolation(frame, next_frame, interpolation, idx) # should return a list of interpolated frames break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", -1) print(break_interpolated_video[0]) for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]): print(f"IMG:{img}") os.rename(img, f"{idx}_to_{idx+1}_{j}.png") result_frames.append(f"{idx}_to_{idx+1}_{j}.png") print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;") #print(f"CURRENT FRAMES: {result_frames}") result_frames.append(f"{frames_list[n_frame-1]}") final_vid = create_video(result_frames, fps_output, "interpolated") files = final_vid print("interpolated frames: " + str(len(frames_list)) + " -> " + str(len(result_frames))) cv2.destroyAllWindows() return final_vid, files def remove_bg(fl, s, l, v): frame = cv2.imread(fl).astype(np.uint8) b = 5 #subtract background (get scene with shadow) bg = cv2.medianBlur(frame, 255) frame_ = ((bg.astype(np.int16)-frame.astype(np.int16))+127).astype(np.uint8) frame_ = cv2.bilateralFilter(frame_, b*4, b*8, b*2) frame_ = cv2.medianBlur(frame_, b) element = cv2.getStructuringElement(cv2.MORPH_RECT, (2*b+1, 2*b+1), (b,b)) frame_ = cv2.erode(cv2.dilate(frame_, element), element) #correct hue against light bg_gray = cv2.cvtColor(cv2.cvtColor(bg, cv2.COLOR_BGR2GRAY), cv2.COLOR_GRAY2BGR) bg_diff = (bg-bg_gray).astype(np.int16) frame_c = (frame.astype(np.int16)-bg_diff).astype(np.uint8) edges = cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), cv2.CV_64F) blur_s = np.zeros_like(edges) for i in range(2, frame.shape[0]-2): for j in range(2, frame.shape[1]-2): d = edges[i-2:i+2,j-2:j+2].var() blur_s[i,j] = (d/512).astype(np.uint8) #remove regions of low saturation and lightness (get scene without shadow) m = cv2.inRange(cv2.cvtColor(frame_c, cv2.COLOR_RGB2HSV), np.array([0,0,0]), np.array([180,s,l])) print(v) mask = cv2.inRange(blur_s, 0, v) masks = np.bitwise_and(m, mask) frame[masks>0] = (127,127,127) frame = cv2.medianBlur(frame, b) m_ = frame_.reshape((-1,3)) # convert to np.float32 m_ = np.float32(m_) # define criteria, number of clusters(K) and apply kmeans() criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 16, 1.0) K = 3 ret,label,center=cv2.kmeans(m_, K, None, criteria, 16, cv2.KMEANS_PP_CENTERS) # Now convert back into uint8, and make original image center = np.uint8(center) res = center[label.flatten()] frame_ = res.reshape((frame_.shape)) #remove shadows at edges m_ = cv2.inRange(frame_, np.array([128,128,128]), np.array([255,255,255])) frame_[m_>0] = (255,255,255) cv2.rectangle(frame_,(0,0),(frame_.shape[1]-1,frame_.shape[0]-1),(255,255,255),7) mask = cv2.floodFill(frame_, None, (0, 0), 255, 0, 0, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8) # 255 << 8 tells to fill with the value 255) mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1] frame_[mask>0] = (127,127,127) m_ = cv2.inRange(frame_, np.array([0,0,0]), np.array([127,127,127])) frame_[m_>0] = (127,127,127) cv2.imwrite(fl, frame) #frame_ return fl def logscale(linear): return int(math.pow(2, linear)) def linscale(linear): return int(math.log2(linear)) def sharpest(fl, i): break_vid = get_frames(fl, "vid_input_frame", "origin", i) frames = [] blur_s = [] for jdx, fr in enumerate(break_vid[0]): frames.append(cv2.imread(fr).astype(np.uint8)) blur_s.append(cv2.Laplacian(cv2.cvtColor(frames[len(frames)-1], cv2.COLOR_BGR2GRAY), cv2.CV_64F).var()) print(str(int(blur_s[jdx]))) indx = np.argmax(blur_s) fl = break_vid[0][indx] n = 25 half = int(n/2) if indx-half < 0: n = indx*2+1 elif indx+half >= len(frames): n = (len(frames)-1-indx)*2+1 #denoise frame = cv2.fastNlMeansDenoisingColoredMulti( srcImgs = frames, imgToDenoiseIndex = indx, temporalWindowSize = n, hColor = 5, templateWindowSize = 21, searchWindowSize = 21) cv2.imwrite(fl, frame) print(str(i) +'th file, sharpest frame: '+str(indx)+', name: '+fl) return fl def sortFiles(e): e = e.split('/') return e[len(e)-1] def loadf(f, s, l, v): if f != None and f[0] != None: f.sort(key=sortFiles) fnew = [] for i, fl in enumerate(f): ftype = fl.split('/') if ftype[len(ftype)-1].split('.')[1] == 'mp4': fl = sharpest(fl, i) fl = remove_bg(fl, s, l, v) fnew.append(fl) return fnew, fnew else: return f, f title="""
""" with gr.Blocks() as demo: with gr.Column(): gr.HTML(title) with gr.Row(): with gr.Column(): with gr.Accordion(label="Upload files here", open=True): files_input = gr.File(file_count="multiple", file_types=['image', '.mp4']) gallery_input = gr.Gallery(label="Slideshow", preview=True, columns=8192, interactive=False) with gr.Accordion(label="Background removal settings", open=False): max_ = gr.Label(value="Shadow maximums:") max_s = gr.Slider(minimum=0, maximum=255, step=1, value=32, label="Saturation") max_l = gr.Slider(minimum=0, maximum=255, step=1, value=64, label="Lightness") max_v = gr.Slider(minimum=0, maximum=255, step=1, value=16, label="Variance") files_input.upload(fn=loadf, inputs=[files_input, max_s, max_l, max_v], outputs=[files_input, gallery_input]) with gr.Row(): interpolation_slider = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Interpolation Steps: ") interpolation = gr.Number(value=1, show_label=False, interactive=False) interpolation_slider.change(fn=logscale, inputs=[interpolation_slider], outputs=[interpolation]) with gr.Row(): fps_output_slider = gr.Slider(minimum=0, maximum=5, step=1, value=0, label="FPS output: ") fps_output = gr.Number(value=1, show_label=False, interactive=False) fps_output_slider.change(fn=logscale, inputs=[fps_output_slider], outputs=[fps_output]) submit_btn = gr.Button("Submit") with gr.Column(): video_output = gr.Video() file_output = gr.File() gr.Examples( examples=[[ ["./examples/0.png", "./examples/1.png", "./examples/2.png", "./examples/3.png", "./examples/4.png"], 32, 64, 16 ]], fn=loadf, inputs=[files_input, max_s, max_l, max_v], outputs=[files_input, gallery_input], cache_examples=True ) submit_btn.click(fn=infer, inputs=[files_input, interpolation_slider, fps_output_slider], outputs=[video_output, file_output]) demo.launch()