Spaces:
Restarting
Restarting
import os | |
os.system("git clone https://github.com/google-research/frame-interpolation") | |
import sys | |
sys.path.append("frame-interpolation") | |
import math | |
import cv2 | |
import numpy as np | |
import tensorflow as tf | |
import mediapy | |
from PIL import Image | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
from image_tools.sizes import resize_and_crop | |
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style") | |
from eval import interpolator, util | |
interpolator = interpolator.Interpolator(model, None) | |
ffmpeg_path = util.get_ffmpeg_path() | |
mediapy.set_ffmpeg(ffmpeg_path) | |
def do_interpolation(frame1, frame2, interpolation, n): | |
print("tween frames: " + str(interpolation)) | |
print(frame1, frame2) | |
input_frames = [frame1, frame2] | |
frames = list( | |
util.interpolate_recursively_from_files( | |
input_frames, int(interpolation), interpolator)) | |
#print(frames) | |
mediapy.write_video(f"{n}_to_{n+1}_out.mp4", frames, fps=25) | |
return f"{n}_to_{n+1}_out.mp4" | |
def get_frames(video_in, step, name, n): | |
frames = [] | |
cap = cv2.VideoCapture(video_in) | |
cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
cfps = int(cap.get(cv2.CAP_PROP_FPS)) | |
print(f'frames: {cframes}, fps: {cfps}') | |
#resize the video | |
#clip = VideoFileClip(video_in) | |
#check fps | |
#if cfps > 25: | |
# print("video rate is over 25, resetting to 25") | |
# clip_resized = clip.resize(height=1024) | |
# clip_resized.write_videofile("video_resized.mp4", fps=25) | |
#else: | |
# print("video rate is OK") | |
# clip_resized = clip.resize(height=1024) | |
# clip_resized.write_videofile("video_resized.mp4", fps=cfps) | |
#print("video resized to 1024 height") | |
# Opens the Video file with CV2 | |
#cap = cv2.VideoCapture("video_resized.mp4") | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
print("video fps: " + str(fps)) | |
i=0 | |
while(cap.isOpened()): | |
ret, frame = cap.read() | |
if ret == False: | |
break | |
#if resize_w > 0: | |
#resize_h = resize_w / 2.0 | |
#frame = cv2.resize(frame, (int(resize_w), int(resize_h))) | |
cv2.imwrite(f"{str(n)}_{name}_{step}{str(i)}.png", frame) | |
frames.append(f"{str(n)}_{name}_{step}{str(i)}.png") | |
i+=1 | |
cap.release() | |
cv2.destroyAllWindows() | |
print("broke the video into frames") | |
return frames, fps | |
def create_video(frames, fps, type): | |
print("building video result") | |
imgs = [] | |
for j, img in enumerate(frames): | |
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB)) | |
mediapy.write_video(type + "_result.mp4", imgs, fps=fps) | |
return type + "_result.mp4" | |
def infer(f_in, interpolation, fps_output): | |
fps_output = logscale(fps_output) | |
# 1. break video into frames and get FPS | |
#break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n) | |
frames_list = f_in #break_vid[0] | |
fps = 1 #break_vid[1] | |
print(f"ORIGIN FPS: {fps}") | |
n_frame = int(300) #limited to 300 frames | |
#n_frame = len(frames_list) | |
if n_frame >= len(frames_list): | |
print("video is shorter than the cut value") | |
n_frame = len(frames_list) | |
# 2. prepare frames result arrays | |
result_frames = [] | |
print("set stop frames to: " + str(n_frame)) | |
for idx, frame in enumerate(frames_list[0:int(n_frame)]): | |
if idx < len(frames_list) - 1: | |
next_frame = frames_list[idx+1] | |
interpolated_frames = do_interpolation(frame, next_frame, interpolation, idx) # should return a list of interpolated frames | |
break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", -1) | |
print(break_interpolated_video[0]) | |
for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]): | |
print(f"IMG:{img}") | |
os.rename(img, f"{idx}_to_{idx+1}_{j}.png") | |
result_frames.append(f"{idx}_to_{idx+1}_{j}.png") | |
print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;") | |
#print(f"CURRENT FRAMES: {result_frames}") | |
result_frames.append(f"{frames_list[n_frame-1]}") | |
final_vid = create_video(result_frames, fps_output, "interpolated") | |
files = final_vid | |
print("interpolated frames: " + str(len(frames_list)) + " -> " + str(len(result_frames))) | |
cv2.destroyAllWindows() | |
return final_vid, files | |
def remove_bg(fl, s, l, v): | |
frame = cv2.imread(fl).astype(np.uint8) | |
b = 5 | |
#subtract background (get scene with shadow) | |
bg = cv2.medianBlur(frame, 255) | |
frame_ = ((bg.astype(np.int16)-frame.astype(np.int16))+127).astype(np.uint8) | |
frame_ = cv2.bilateralFilter(frame_, b*4, b*8, b*2) | |
frame_ = cv2.medianBlur(frame_, b) | |
element = cv2.getStructuringElement(cv2.MORPH_RECT, (2*b+1, 2*b+1), (b,b)) | |
frame_ = cv2.erode(cv2.dilate(frame_, element), element) | |
#correct hue against light | |
bg_gray = cv2.cvtColor(cv2.cvtColor(bg, cv2.COLOR_BGR2GRAY), cv2.COLOR_GRAY2BGR) | |
bg_diff = (bg-bg_gray).astype(np.int16) | |
frame_c = (frame.astype(np.int16)-bg_diff).astype(np.uint8) | |
edges = cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), cv2.CV_64F) | |
blur_s = np.zeros_like(edges) | |
for i in range(2, frame.shape[0]-2): | |
for j in range(2, frame.shape[1]-2): | |
d = edges[i-2:i+2,j-2:j+2].var() | |
blur_s[i,j] = (d/512).astype(np.uint8) | |
#remove regions of low saturation and lightness (get scene without shadow) | |
m = cv2.inRange(cv2.cvtColor(frame_c, cv2.COLOR_RGB2HSV), np.array([0,0,0]), np.array([180,s,l])) | |
print(v) | |
mask = cv2.inRange(blur_s, 0, v) | |
masks = np.bitwise_and(m, mask) | |
frame[masks>0] = (127,127,127) | |
frame = cv2.medianBlur(frame, b) | |
m_ = frame_.reshape((-1,3)) | |
# convert to np.float32 | |
m_ = np.float32(m_) | |
# define criteria, number of clusters(K) and apply kmeans() | |
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 16, 1.0) | |
K = 3 | |
ret,label,center=cv2.kmeans(m_, K, None, criteria, 16, cv2.KMEANS_PP_CENTERS) | |
# Now convert back into uint8, and make original image | |
center = np.uint8(center) | |
res = center[label.flatten()] | |
frame_ = res.reshape((frame_.shape)) | |
#remove shadows at edges | |
m_ = cv2.inRange(frame_, np.array([128,128,128]), np.array([255,255,255])) | |
frame_[m_>0] = (255,255,255) | |
cv2.rectangle(frame_,(0,0),(frame_.shape[1]-1,frame_.shape[0]-1),(255,255,255),7) | |
mask = cv2.floodFill(frame_, None, (0, 0), 255, 0, 0, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8) | |
# 255 << 8 tells to fill with the value 255) | |
mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1] | |
frame_[mask>0] = (127,127,127) | |
m_ = cv2.inRange(frame_, np.array([0,0,0]), np.array([127,127,127])) | |
frame_[m_>0] = (127,127,127) | |
cv2.imwrite(fl, frame) #frame_ | |
return fl | |
def logscale(linear): | |
return int(math.pow(2, linear)) | |
def linscale(linear): | |
return int(math.log2(linear)) | |
def sharpest(fl, i): | |
break_vid = get_frames(fl, "vid_input_frame", "origin", i) | |
frames = [] | |
blur_s = [] | |
for jdx, fr in enumerate(break_vid[0]): | |
frames.append(cv2.imread(fr).astype(np.uint8)) | |
blur_s.append(cv2.Laplacian(cv2.cvtColor(frames[len(frames)-1], cv2.COLOR_BGR2GRAY), cv2.CV_64F).var()) | |
print(str(int(blur_s[jdx]))) | |
indx = np.argmax(blur_s) | |
fl = break_vid[0][indx] | |
n = 25 | |
half = int(n/2) | |
if indx-half < 0: | |
n = indx*2+1 | |
elif indx+half >= len(frames): | |
n = (len(frames)-1-indx)*2+1 | |
#denoise | |
frame = cv2.fastNlMeansDenoisingColoredMulti( | |
srcImgs = frames, | |
imgToDenoiseIndex = indx, | |
temporalWindowSize = n, | |
hColor = 5, | |
templateWindowSize = 21, | |
searchWindowSize = 21) | |
cv2.imwrite(fl, frame) | |
print(str(i) +'th file, sharpest frame: '+str(indx)+', name: '+fl) | |
return fl | |
def sortFiles(e): | |
e = e.split('/') | |
return e[len(e)-1] | |
def loadf(f, s, l, v): | |
if f != None and f[0] != None: | |
f.sort(key=sortFiles) | |
fnew = [] | |
for i, fl in enumerate(f): | |
ftype = fl.split('/') | |
if ftype[len(ftype)-1].split('.')[1] == 'mp4': | |
fl = sharpest(fl, i) | |
fl = remove_bg(fl, s, l, v) | |
fnew.append(fl) | |
return fnew, fnew | |
else: | |
return f, f | |
title=""" | |
<div style="text-align: center; max-width: 500px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
margin-bottom: 10px; | |
" | |
> | |
<h1 style="font-weight: 600; margin-bottom: 7px;"> | |
Video interpolation from images with FILM | |
</h1> | |
</div> | |
<p> This space uses FILM to generate interpolation frames in a set of image files you need to turn into a video. | |
Limited to 300 uploaded frames, from the beginning of your input.<br /> | |
<a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> | |
</p> | |
</div> | |
""" | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion(label="Upload files here", open=True): | |
files_input = gr.File(file_count="multiple", file_types=['image', '.mp4']) | |
gallery_input = gr.Gallery(label="Slideshow", preview=True, columns=8192, interactive=False) | |
with gr.Accordion(label="Background removal settings", open=False): | |
max_ = gr.Label(value="Shadow maximums:") | |
max_s = gr.Slider(minimum=0, maximum=255, step=1, value=32, label="Saturation") | |
max_l = gr.Slider(minimum=0, maximum=255, step=1, value=64, label="Lightness") | |
max_v = gr.Slider(minimum=0, maximum=255, step=1, value=16, label="Variance") | |
files_input.upload(fn=loadf, inputs=[files_input, max_s, max_l, max_v], outputs=[files_input, gallery_input]) | |
with gr.Row(): | |
interpolation_slider = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Interpolation Steps: ") | |
interpolation = gr.Number(value=1, show_label=False, interactive=False) | |
interpolation_slider.change(fn=logscale, inputs=[interpolation_slider], outputs=[interpolation]) | |
with gr.Row(): | |
fps_output_slider = gr.Slider(minimum=0, maximum=5, step=1, value=0, label="FPS output: ") | |
fps_output = gr.Number(value=1, show_label=False, interactive=False) | |
fps_output_slider.change(fn=logscale, inputs=[fps_output_slider], outputs=[fps_output]) | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
video_output = gr.Video() | |
file_output = gr.File() | |
gr.Examples( | |
examples=[[ | |
["./examples/0.png", "./examples/1.png", "./examples/2.png", "./examples/3.png", "./examples/4.png"], | |
32, 64, 16 | |
]], | |
fn=loadf, | |
inputs=[files_input, max_s, max_l, max_v], | |
outputs=[files_input, gallery_input], | |
cache_examples=True | |
) | |
submit_btn.click(fn=infer, inputs=[files_input, interpolation_slider, fps_output_slider], outputs=[video_output, file_output]) | |
demo.launch() |