File size: 14,573 Bytes
ce026c7 582459e ce026c7 c5e4aef ce026c7 76ce3f3 ce026c7 c5e4aef ce026c7 15db140 ce026c7 fd98fd4 98d8d0a d2307e4 1425010 ce026c7 f6676b6 d2307e4 fd98fd4 ce026c7 a3c8099 5159a77 e3b4cd4 026d83a c50ba42 ce026c7 5159a77 54a97b2 026d83a 54a97b2 ce026c7 54a97b2 5159a77 e3b4cd4 5159a77 af52397 5159a77 0e45ce4 434296c d0c4932 a3c8099 5159a77 978f4b1 45242ca b33f76e d255d69 104e59c 6c453b9 5159a77 31c6000 5159a77 d1555f9 5159a77 d96738b 31c6000 d96738b af230b3 d96738b 91dc1c2 5159a77 e304972 2167d4d 5159a77 5cc7c56 31c6000 d0c4932 8c5de78 ad6513c 8c5de78 fd98fd4 a0fa656 329d584 af230b3 31c6000 378846e 5159a77 91dc1c2 6832791 bf824dd 30d0a53 5159a77 374f33e 459599c 27a6975 459599c a947b5f b3651f1 15db140 3d3690a 15db140 27a21ee 15db140 2850d31 15db140 bab488d 15db140 f38bca9 15db140 dd5a8d5 4d58024 e633d2f eca6721 dad31bb 2bf43a3 1742cea 84f3a6a 1742cea 76ce3f3 6115fa9 f0ad2ac 76ce3f3 b3651f1 94dd4f3 adc979c 9ef6880 adc979c 94dd4f3 bc128a0 748c603 e2cd3e8 f0ad2ac 15db140 f38bca9 4f8ff11 f38bca9 53a7ccb a3c8099 d8d1ea1 53a7ccb d8d1ea1 cb6c3ff 87789b8 d8d1ea1 4f8ff11 d8d1ea1 94dd4f3 4f8ff11 d8d1ea1 20e2e3b 53a7ccb 84de2ce 5ed3667 f7a7c2b 84de2ce cb6c3ff 53a7ccb a68573a f38bca9 15db140 5ed3667 3901e7b a57bca1 cb6c3ff 11adb5c c976d84 459599c 5159a77 84de2ce 5159a77 913ac79 c39bb40 a9e79e7 5159a77 932dac6 66e74e2 932dac6 35913d3 4ad0232 84f3a6a 4ad0232 5ed3667 b3651f1 66e74e2 91dc1c2 9038b45 30d0a53 27a6975 2242a2f 0e4eb74 c976d84 27a6975 5159a77 84677ca 91dc1c2 f84a85d b3651f1 6115fa9 b3651f1 f84a85d e5c1b37 b3651f1 8477f00 0418ceb 91dc1c2 5159a77 31c6000 ce026c7 5159a77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")
import math
import cv2
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download
from image_tools.sizes import resize_and_crop
from pymatting import cutout
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
from eval import interpolator, util
interpolator = interpolator.Interpolator(model, None)
ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)
fl_ = ""
fl_mask = ""
def do_interpolation(frame1, frame2, interpolation, n):
print("tween frames: " + str(interpolation))
print(frame1, frame2)
input_frames = [frame1, frame2]
frames = list(
util.interpolate_recursively_from_files(
input_frames, int(interpolation), interpolator))
#print(frames)
mediapy.write_video(f"{n}_to_{n+1}_out.mp4", frames, fps=25)
return f"{n}_to_{n+1}_out.mp4"
def get_frames(video_in, step, name, n):
frames = []
cap = cv2.VideoCapture(video_in)
cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cfps = int(cap.get(cv2.CAP_PROP_FPS))
print(f'frames: {cframes}, fps: {cfps}')
#resize the video
#clip = VideoFileClip(video_in)
#check fps
#if cfps > 25:
# print("video rate is over 25, resetting to 25")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=25)
#else:
# print("video rate is OK")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=cfps)
#print("video resized to 1024 height")
# Opens the Video file with CV2
#cap = cv2.VideoCapture("video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
#if resize_w > 0:
#resize_h = resize_w / 2.0
#frame = cv2.resize(frame, (int(resize_w), int(resize_h)))
cv2.imwrite(f"{str(n)}_{name}_{step}{str(i)}.png", frame)
frames.append(f"{str(n)}_{name}_{step}{str(i)}.png")
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def create_video(frames, fps, type):
print("building video result")
imgs = []
for j, img in enumerate(frames):
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
return type + "_result.mp4"
def infer(f_in, interpolation, fps_output):
fps_output = logscale(fps_output)
# 1. break video into frames and get FPS
#break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n)
frames_list = f_in #break_vid[0]
fps = 1 #break_vid[1]
print(f"ORIGIN FPS: {fps}")
n_frame = int(300) #limited to 300 frames
#n_frame = len(frames_list)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
result_frames = []
print("set stop frames to: " + str(n_frame))
for idx, frame in enumerate(frames_list[0:int(n_frame)]):
if idx < len(frames_list) - 1:
next_frame = frames_list[idx+1]
interpolated_frames = do_interpolation(frame, next_frame, interpolation, idx) # should return a list of interpolated frames
break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", -1)
print(break_interpolated_video[0])
for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]):
print(f"IMG:{img}")
os.rename(img, f"{idx}_to_{idx+1}_{j}.png")
result_frames.append(f"{idx}_to_{idx+1}_{j}.png")
print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;")
#print(f"CURRENT FRAMES: {result_frames}")
result_frames.append(f"{frames_list[n_frame-1]}")
final_vid = create_video(result_frames, fps_output, "interpolated")
files = final_vid
print("interpolated frames: " + str(len(frames_list)) + " -> " + str(len(result_frames)))
cv2.destroyAllWindows()
return final_vid, files
def logscale(linear):
return int(math.pow(2, linear))
def linscale(linear):
return int(math.log2(linear))
def remove_bg(fl, count, mh, ms, md, lm, b, d):
global fl_
fr = cv2.imread(fl).astype(np.uint8)
#b = 3
#element = cv2.getStructuringElement(cv2.MORPH_RECT, (2 * b + 1, 2 * b + 1), (b, b))
n = int((fr.shape[0]*fr.shape[1]) / (256*256))
fr_bg = cv2.medianBlur(fr, 255)
for i in range(0, n):
fr_bg = cv2.medianBlur(fr_bg, 255)
fr_diff = cv2.convertScaleAbs(fr.astype(np.int16)-fr_bg.astype(np.int16)).astype(np.uint8)
hsv = cv2.cvtColor(fr_diff, cv2.COLOR_BGR2HSV) # range: 180, 255, 255
fr_diff = cv2.cvtColor(fr_diff, cv2.COLOR_BGR2GRAY)
if lm == "median":
mh = np.median(hsv[:,:,0])
ms = np.median(hsv[:,:,1])
md = np.median(hsv[:,:,2])
elif lm == "average":
mh = np.average(hsv[:,:,0])
ms = np.average(hsv[:,:,1])
md = np.average(hsv[:,:,2])
bg = cv2.inRange(hsv, np.array([0,0,0]), np.array([mh,ms,md]))
fr_diff[bg>0] = 0
fr_diff[bg==0] = 255
cv2.rectangle(fr_diff,(0,0),(fr_diff.shape[1]-1,fr_diff.shape[0]-1),(255,255,255),1)
mask = cv2.floodFill(fr_diff, None, (0, 0), 255, 0, 0, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv.FLOODFILL_FIXED_RANGE | cv.FLOODFILL_MASK_ONLY | 255 << 8)
# 255 << 8 tells to fill with the value 255)
mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
fr_diff[mask>0] = 0
#fr_diff = cv2.dilate(cv2.erode(fr_diff, element), element)
if count % 2: # odd: is photo without the flash
fr_mask = cv2.cvtColor(cv2.imread(fl_).astype(np.uint8), cv2.COLOR_BGR2GRAY)
fr_not = np.bitwise_not(fr_mask)
fr_shadow = np.bitwise_and(fr_diff, fr_not).astype(np.uint8)
fr_fg = np.bitwise_or(fr_diff, fr_mask).astype(np.uint8)
cv2.imwrite(fl_, fr_mask)
m = cv2.inRange(fr, np.array([240,240,240]), np.array([255,255,255]))
fr[m>0] = (239,239,239)
m = cv2.inRange(fr, np.array([0,0,0]), np.array([15,15,15]))
fr[m>0] = (16,16,16)
fr[fr_shadow>0] = (fr[fr_shadow>0] / 17).astype(np.uint8)
#fr[fr_fg==0] = (255,255,255)
fr_fg[fr_fg>0] = 3 #probable fg
mask, bgdModel, fgdModel = cv2.grabCut(fr, fr_fg, None,None,None,65, cv2.GC_INIT_WITH_MASK)
mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
#fr[mask==0] = (255,255,255)
cv2.imwrite(fl, fr)
#b = 3
#d = 15
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
mask_e = cv2.erode(mask, element) * 255
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * d + 1, 2 * d + 1), (d, d))
mask_d = cv2.dilate(mask, element) * 127
mask_d[mask_e>0] = 255
cv2.imwrite(f"{str(count)}_trimask.png", mask_d.astype(np.uint8))
cutout(fl, f"{str(count)}_trimask.png", f"{str(count)}_cutout.png")
a_map = cv2.imread(f"{str(count)}_cutout.png", cv2.IMREAD_UNCHANGED).astype(np.uint8)
B, G, R, A = cv2.split(a_map)
alpha = A / 255
alpha[A<255] = alpha[A<255] / 17
R = (255 * (1 - alpha) + R * alpha).astype(np.uint8)
G = (255 * (1 - alpha) + G * alpha).astype(np.uint8)
B = (255 * (1 - alpha) + B * alpha).astype(np.uint8)
fr = cv2.merge((B, G, R))
cv2.imwrite(fl, fr)
return fl
else: # even: with the flash
fl_ = fl.split(".")[0] + "_.png"
cv2.imwrite(fl_, fr_diff.astype(np.uint8))
return fl_
def denoise(fl):
fr = cv2.imread(fl).astype(np.uint8)
fr = cv2.medianBlur(cv2.fastNlMeansDenoisingColored(fr, None, 5,5,7,21), 3)
cv2.imwrite(fl, fr)
return fl
def sharpest(fl, i):
break_vid = get_frames(fl, "vid_input_frame", "origin", i)
frames = []
blur_s = []
for jdx, fr in enumerate(break_vid[0]):
frames.append(cv2.imread(fr).astype(np.uint8))
blur_s.append(cv2.Laplacian(cv2.cvtColor(frames[len(frames)-1], cv2.COLOR_BGR2GRAY), cv2.CV_64F).var())
print(str(int(blur_s[jdx])))
indx = np.argmax(blur_s)
fl = break_vid[0][indx]
n = 25
half = int(n/2)
if indx-half < 0:
n = indx*2+1
elif indx+half >= len(frames):
n = (len(frames)-1-indx)*2+1
#denoise
frame = cv2.medianBlur(cv2.fastNlMeansDenoisingColoredMulti(
srcImgs = frames,
imgToDenoiseIndex = indx,
temporalWindowSize = n,
hColor = 5,
templateWindowSize = 7,
searchWindowSize = 21), 3)
cv2.imwrite(fl, frame)
print(str(i) +'th file, sharpest frame: '+str(indx)+', name: '+fl)
return fl
def sortFiles(e):
e = e.split('/')
return e[len(e)-1]
def loadf(f, r_bg, mh, ms, md, lm, b, d):
if f != None and f[0] != None:
f.sort(key=sortFiles)
fnew = []
for i, fl in enumerate(f):
ftype = fl.split('/')
if ftype[len(ftype)-1].split('.')[1] == 'mp4':
fl = sharpest(fl, i)
else:
fl = denoise(fl)
if r_bg == True:
fl = remove_bg(fl, i, mh, ms, md, lm, b, d)
if i % 2: # odd: is photo without the flash
fnew.append(fl)
else:
fnew.append(fl)
return fnew, fnew
else:
return f, f
title="""
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
"
>
<h1 style="font-weight: 600; margin-bottom: 7px;">
Video interpolation from images with FILM
</h1>
</div>
<p> This space uses FILM to generate interpolation frames in a set of image files you need to turn into a video for stop motion animation.
If .mp4 videos are uploaded instead, selects the sharpest frame of each. Limited to 300 uploaded frames, from the beginning of input.<br />
<a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</p>
</div>
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
with gr.Accordion(label="Upload files here", open=True):
files_orig = gr.File(file_count="multiple", file_types=['image', '.mp4'])
files_input = gr.File(file_count="multiple", visible=False)
gallery_input = gr.Gallery(label="Slideshow", preview=True, columns=8192, interactive=False)
with gr.Group():
r_bg = gr.Checkbox(label="Remove background", value=True)
with gr.Accordion(label="Max differences for background", open=False):
mh = gr.Slider(minimum=0, maximum=180, step=1, value=180, label="Hue")
ms = gr.Slider(minimum=0, maximum=255, step=1, value=255, label="Saturation")
md = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Lightness")
lm = gr.Radio(label="Use max diffs from", choices=["average", "median", "slider"], value="slider")
with gr.Tab("Border"):
b_size = gr.Slider(minimum=1, maximum=255, step=2, value=3, label="Inner")
d_size = gr.Slider(minimum=1, maximum=255, step=2, value=15, label="Outer")
files_orig.upload(fn=loadf, inputs=[files_orig, r_bg, mh, ms, md, lm, b_size, d_size], outputs=[files_input, gallery_input])
with gr.Row():
interpolation_slider = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Interpolation Steps: ")
interpolation = gr.Number(value=1, show_label=False, interactive=False)
interpolation_slider.change(fn=logscale, inputs=[interpolation_slider], outputs=[interpolation])
with gr.Row():
fps_output_slider = gr.Slider(minimum=0, maximum=5, step=1, value=0, label="FPS output: ")
fps_output = gr.Number(value=1, show_label=False, interactive=False)
fps_output_slider.change(fn=logscale, inputs=[fps_output_slider], outputs=[fps_output])
submit_btn = gr.Button("Submit")
with gr.Column():
video_output = gr.Video()
file_output = gr.File()
gr.Examples(
examples=[[
["./examples/0.png", "./examples/1.png", "./examples/2.png", "./examples/3.png", "./examples/4.png"], False, 0, 0, 0, "slider", 1, 1
], [
["./examples/0_flash.jpg", "./examples/1_noflash.jpg", "./examples/2_flash.jpg", "./examples/3_noflash.jpg"], True, 180, 255, 12, "slider", 3, 15
]],
fn=loadf,
inputs=[files_orig, r_bg, mh, ms, md, lm, b_size, d_size],
outputs=[files_input, gallery_input],
cache_examples=True
)
submit_btn.click(fn=infer, inputs=[files_input, interpolation_slider, fps_output_slider], outputs=[video_output, file_output])
demo.launch() |