File size: 11,341 Bytes
ce026c7 582459e ce026c7 c5e4aef ce026c7 c5e4aef ce026c7 fd98fd4 98d8d0a d2307e4 1425010 ce026c7 f6676b6 d2307e4 fd98fd4 ce026c7 a3c8099 5159a77 e3b4cd4 026d83a c50ba42 ce026c7 5159a77 54a97b2 026d83a 54a97b2 ce026c7 54a97b2 5159a77 e3b4cd4 5159a77 af52397 5159a77 0e45ce4 434296c d0c4932 a3c8099 5159a77 978f4b1 45242ca 104e59c d255d69 104e59c 6c453b9 5159a77 31c6000 5159a77 d1555f9 5159a77 d96738b 31c6000 d96738b af230b3 d96738b 91dc1c2 5159a77 e304972 2167d4d 5159a77 5cc7c56 31c6000 d0c4932 8c5de78 ad6513c 8c5de78 fd98fd4 a0fa656 329d584 af230b3 31c6000 378846e 5159a77 91dc1c2 6832791 bf824dd 30d0a53 5159a77 374f33e 0e7086c 978f0af d8d1ea1 e5c1b37 d8d1ea1 e5c1b37 d8d1ea1 e5c1b37 d8d1ea1 e5c1b37 d8d1ea1 e5c1b37 d8d1ea1 e5c1b37 d8d1ea1 0e7086c d8d1ea1 459599c 27a6975 459599c a947b5f 53a7ccb a3c8099 d8d1ea1 53a7ccb d8d1ea1 cb6c3ff 87789b8 d8d1ea1 20e2e3b 53a7ccb 84de2ce 31c6000 f7a7c2b 84de2ce cb6c3ff 53a7ccb a68573a d8d1ea1 a68573a cb6c3ff 11adb5c c976d84 459599c 5159a77 84de2ce 5159a77 932dac6 11adb5c c39bb40 a9e79e7 5159a77 932dac6 0e45ce4 932dac6 ec0d6ef 91dc1c2 9038b45 30d0a53 27a6975 2242a2f 0e4eb74 c976d84 27a6975 5159a77 84677ca 91dc1c2 c66b1cb e5c1b37 8477f00 0418ceb 91dc1c2 5159a77 31c6000 ce026c7 5159a77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")
import math
import cv2
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download
from image_tools.sizes import resize_and_crop
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
from eval import interpolator, util
interpolator = interpolator.Interpolator(model, None)
ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)
def do_interpolation(frame1, frame2, interpolation, n):
print("tween frames: " + str(interpolation))
print(frame1, frame2)
input_frames = [frame1, frame2]
frames = list(
util.interpolate_recursively_from_files(
input_frames, int(interpolation), interpolator))
#print(frames)
mediapy.write_video(f"{n}_to_{n+1}_out.mp4", frames, fps=25)
return f"{n}_to_{n+1}_out.mp4"
def get_frames(video_in, step, name, n):
frames = []
cap = cv2.VideoCapture(video_in)
cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cfps = int(cap.get(cv2.CAP_PROP_FPS))
print(f'frames: {cframes}, fps: {cfps}')
#resize the video
#clip = VideoFileClip(video_in)
#check fps
#if cfps > 25:
# print("video rate is over 25, resetting to 25")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=25)
#else:
# print("video rate is OK")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=cfps)
#print("video resized to 1024 height")
# Opens the Video file with CV2
#cap = cv2.VideoCapture("video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
#if resize_w > 0:
#resize_h = resize_w / 2.0
#frame = cv2.resize(frame, (int(resize_w), int(resize_h)))
cv2.imwrite(f"{str(n)}_{name}_{step}{str(i)}.png", frame)
frames.append(f"{str(n)}_{name}_{step}{str(i)}.png")
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def create_video(frames, fps, type):
print("building video result")
imgs = []
for j, img in enumerate(frames):
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
return type + "_result.mp4"
def infer(f_in, interpolation, fps_output):
fps_output = logscale(fps_output)
# 1. break video into frames and get FPS
#break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n)
frames_list = f_in #break_vid[0]
fps = 1 #break_vid[1]
print(f"ORIGIN FPS: {fps}")
n_frame = int(300) #limited to 300 frames
#n_frame = len(frames_list)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
result_frames = []
print("set stop frames to: " + str(n_frame))
for idx, frame in enumerate(frames_list[0:int(n_frame)]):
if idx < len(frames_list) - 1:
next_frame = frames_list[idx+1]
interpolated_frames = do_interpolation(frame, next_frame, interpolation, idx) # should return a list of interpolated frames
break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", -1)
print(break_interpolated_video[0])
for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]):
print(f"IMG:{img}")
os.rename(img, f"{idx}_to_{idx+1}_{j}.png")
result_frames.append(f"{idx}_to_{idx+1}_{j}.png")
print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;")
#print(f"CURRENT FRAMES: {result_frames}")
result_frames.append(f"{frames_list[n_frame-1]}")
final_vid = create_video(result_frames, fps_output, "interpolated")
files = final_vid
print("interpolated frames: " + str(len(frames_list)) + " -> " + str(len(result_frames)))
cv2.destroyAllWindows()
return final_vid, files
def remove_bg(fl):
frame = cv2.imread(fl).astype(np.uint8)
b = 5
#subtract background (get scene with shadow)
bg = cv2.medianBlur(frame, 255)
frame_ = ((bg.astype(np.int16)-frame.astype(np.int16))+127).astype(np.uint8)
frame_ = cv2.bilateralFilter(frame_, b*4, b*8, b*2)
frame_ = cv2.medianBlur(frame_, b)
element = cv2.getStructuringElement(cv2.MORPH_RECT, (2*b+1, 2*b+1), (b,b))
frame_ = cv2.erode(cv2.dilate(frame_, element), element)
#correct hue against light
bg_gray = cv2.cvtColor(cv2.cvtColor(bg, cv2.COLOR_BGR2GRAY), cv2.COLOR_GRAY2BGR)
bg_diff = (bg-bg_gray).astype(np.int16)
frame = (frame.astype(np.int16)-bg_diff).astype(np.uint8)
#remove regions of low saturation (get scene without shadow)
m = cv2.inRange(cv2.cvtColor(frame, cv2.COLOR_RGB2HSV), np.array([0,0,0]), np.array([180,32,256]))
frame[m>0] = (127,127,127)
frame = cv2.medianBlur(frame, b)
m_ = frame_.reshape((-1,3))
# convert to np.float32
m_ = np.float32(m_)
# define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 16, 1.0)
K = 3
ret,label,center=cv2.kmeans(m_, K, None, criteria, 16, cv2.KMEANS_PP_CENTERS)
# Now convert back into uint8, and make original image
center = np.uint8(center)
res = center[label.flatten()]
frame_ = res.reshape((frame_.shape))
#remove shadows at edges
m_ = cv2.inRange(frame_, np.array([128,128,128]), np.array([255,255,255]))
frame_[m_>0] = (255,255,255)
cv2.rectangle(frame_,(0,0),(frame_.shape[1]-1,frame_.shape[0]-1),(255,255,255),7)
mask = cv2.floodFill(frame_, None, (0, 0), 255, 0, 0, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
# 255 << 8 tells to fill with the value 255)
mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
frame_[mask>0] = (127,127,127)
m_ = cv2.inRange(frame_, np.array([0,0,0]), np.array([127,127,127]))
frame_[m_>0] = (127,127,127)
cv2.imwrite(fl, frame) #frame_
return fl
def logscale(linear):
return int(math.pow(2, linear))
def linscale(linear):
return int(math.log2(linear))
def sharpest(fl, i):
break_vid = get_frames(fl, "vid_input_frame", "origin", i)
frames = []
blur_s = []
for jdx, fr in enumerate(break_vid[0]):
frames.append(cv2.imread(fr).astype(np.uint8))
blur_s.append(cv2.Laplacian(cv2.cvtColor(frames[len(frames)-1], cv2.COLOR_BGR2GRAY), cv2.CV_64F).var())
print(str(int(blur_s[jdx])))
indx = np.argmax(blur_s)
fl = break_vid[0][indx]
n = 25
half = int(n/2)
if indx-half < 0:
n = indx*2+1
elif indx+half >= len(frames):
n = (len(frames)-1-indx)*2+1
#denoise
frame = cv2.fastNlMeansDenoisingColoredMulti(
srcImgs = frames,
imgToDenoiseIndex = indx,
temporalWindowSize = n,
hColor = 5,
templateWindowSize = 21,
searchWindowSize = 21)
cv2.imwrite(fl, frame)
print(str(i) +'th file, sharpest frame: '+str(indx)+', name: '+fl)
return fl
def sortFiles(e):
e = e.split('/')
return e[len(e)-1]
def loadf(f):
if f != None and f[0] != None:
f.sort(key=sortFiles)
fnew = []
for i, fl in enumerate(f):
ftype = fl.split('/')
if ftype[len(ftype)-1].split('.')[1] == 'mp4':
fl = sharpest(fl, i)
fl = remove_bg(fl)
fnew.append(fl)
return fnew, fnew
else:
return f, f
title="""
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
"
>
<h1 style="font-weight: 600; margin-bottom: 7px;">
Video interpolation from images with FILM
</h1>
</div>
<p> This space uses FILM to generate interpolation frames in a set of image files you need to turn into a video.
Limited to 300 uploaded frames, from the beginning of your input.<br />
<a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</p>
</div>
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
with gr.Accordion(label="Upload files here", open=True):
files_input = gr.File(file_count="multiple", file_types=['image', '.mp4'])
gallery_input = gr.Gallery(label="Slideshow", preview=True, columns=8192, interactive=False)
files_input.upload(fn=loadf, inputs=[files_input], outputs=[files_input, gallery_input])
with gr.Row():
interpolation_slider = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Interpolation Steps: ")
interpolation = gr.Number(value=1, show_label=False, interactive=False)
interpolation_slider.change(fn=logscale, inputs=[interpolation_slider], outputs=[interpolation])
with gr.Row():
fps_output_slider = gr.Slider(minimum=0, maximum=5, step=1, value=0, label="FPS output: ")
fps_output = gr.Number(value=1, show_label=False, interactive=False)
fps_output_slider.change(fn=logscale, inputs=[fps_output_slider], outputs=[fps_output])
submit_btn = gr.Button("Submit")
with gr.Column():
video_output = gr.Video()
file_output = gr.File()
gr.Examples(
examples=[[["./examples/0.png", "./examples/1.png", "./examples/2.png", "./examples/3.png", "./examples/4.png"], 1, 0]],
fn=loadf,
inputs=[files_input],
outputs=[files_input, gallery_input],
cache_examples=True
)
submit_btn.click(fn=infer, inputs=[files_input, interpolation_slider, fps_output_slider], outputs=[video_output, file_output])
demo.launch() |