File size: 14,337 Bytes
ce026c7
 
 
 
 
582459e
ce026c7
 
 
 
 
c5e4aef
ce026c7
 
 
 
 
 
 
c5e4aef
ce026c7
 
 
 
 
 
fd98fd4
98d8d0a
d2307e4
1425010
ce026c7
 
f6676b6
d2307e4
 
fd98fd4
 
ce026c7
a3c8099
5159a77
e3b4cd4
 
 
 
026d83a
 
c50ba42
ce026c7
5159a77
54a97b2
 
026d83a
54a97b2
 
 
 
 
ce026c7
54a97b2
5159a77
 
e3b4cd4
5159a77
 
af52397
5159a77
 
 
 
 
0e45ce4
 
 
434296c
d0c4932
a3c8099
5159a77
 
 
 
 
 
 
 
 
 
 
978f4b1
45242ca
104e59c
d255d69
104e59c
6c453b9
5159a77
 
31c6000
5159a77
d1555f9
5159a77
d96738b
31c6000
d96738b
af230b3
d96738b
91dc1c2
5159a77
 
 
 
 
 
 
 
e304972
2167d4d
5159a77
 
5cc7c56
31c6000
d0c4932
8c5de78
ad6513c
8c5de78
fd98fd4
 
a0fa656
329d584
af230b3
31c6000
378846e
5159a77
91dc1c2
6832791
bf824dd
 
30d0a53
5159a77
374f33e
78416ce
0e7086c
978f0af
d8d1ea1
e5c1b37
d8d1ea1
e5c1b37
 
 
 
 
 
 
 
5772aff
e5c1b37
d8d1ea1
 
a5fbd82
5772aff
c87784d
3f3f85d
c87784d
1b67f11
e173f8e
 
a9f03af
499c673
6ba6c51
f5e6c30
78416ce
4e5b18c
 
 
 
 
 
 
 
f5e6c30
78416ce
f5e6c30
 
 
 
 
 
 
 
 
 
7bf40a3
1a99c78
d8d1ea1
 
 
 
 
 
 
 
e5c1b37
d8d1ea1
 
 
 
 
 
 
e5c1b37
 
 
d8d1ea1
 
 
e5c1b37
1a99c78
e5c1b37
1a99c78
d8d1ea1
0880195
 
 
 
 
 
 
 
 
 
 
 
 
a57bca1
0880195
 
 
0e7086c
d8d1ea1
459599c
27a6975
459599c
a947b5f
 
 
53a7ccb
a3c8099
d8d1ea1
 
53a7ccb
 
d8d1ea1
 
cb6c3ff
87789b8
d8d1ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20e2e3b
53a7ccb
84de2ce
 
 
 
78416ce
f7a7c2b
84de2ce
cb6c3ff
53a7ccb
 
 
 
a68573a
 
a57bca1
78416ce
a57bca1
d8d1ea1
a68573a
cb6c3ff
11adb5c
 
c976d84
459599c
5159a77
 
 
 
 
 
 
 
 
 
 
 
84de2ce
5159a77
 
 
932dac6
11adb5c
c39bb40
a9e79e7
5159a77
 
 
 
 
 
 
 
932dac6
66e74e2
 
932dac6
95546aa
239c963
a5c6c1f
 
78416ce
f5e6c30
a57bca1
66e74e2
 
 
 
 
91dc1c2
9038b45
30d0a53
27a6975
2242a2f
0e4eb74
c976d84
27a6975
5159a77
 
 
84677ca
91dc1c2
 
 
f84a85d
 
78416ce
f84a85d
e5c1b37
66e74e2
8477f00
0418ceb
91dc1c2
5159a77
31c6000
ce026c7
5159a77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")

import math
import cv2
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image

import gradio as gr

from huggingface_hub import snapshot_download
from image_tools.sizes import resize_and_crop


model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
from eval import interpolator, util
interpolator = interpolator.Interpolator(model, None)

ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)


def do_interpolation(frame1, frame2, interpolation, n):
    print("tween frames: " + str(interpolation))
    print(frame1, frame2)
    input_frames = [frame1, frame2]
    frames = list(
        util.interpolate_recursively_from_files(
            input_frames, int(interpolation), interpolator))
    
    #print(frames)
    mediapy.write_video(f"{n}_to_{n+1}_out.mp4", frames, fps=25)
    return f"{n}_to_{n+1}_out.mp4"
    
def get_frames(video_in, step, name, n):
    frames = []
    cap = cv2.VideoCapture(video_in)
    cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    cfps = int(cap.get(cv2.CAP_PROP_FPS))
    print(f'frames: {cframes}, fps: {cfps}')

    #resize the video
    #clip = VideoFileClip(video_in)
    
    #check fps
    #if cfps > 25:
    #    print("video rate is over 25, resetting to 25")
    #    clip_resized = clip.resize(height=1024)
    #    clip_resized.write_videofile("video_resized.mp4", fps=25)
    #else:
    #    print("video rate is OK")
    #    clip_resized = clip.resize(height=1024)
    #    clip_resized.write_videofile("video_resized.mp4", fps=cfps)
    
    #print("video resized to 1024 height")
    
    # Opens the Video file with CV2
    #cap = cv2.VideoCapture("video_resized.mp4")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    print("video fps: " + str(fps))
    i=0
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret == False:
            break
        #if resize_w > 0:
          #resize_h = resize_w / 2.0
          #frame = cv2.resize(frame, (int(resize_w), int(resize_h)))
        
        cv2.imwrite(f"{str(n)}_{name}_{step}{str(i)}.png", frame)
        frames.append(f"{str(n)}_{name}_{step}{str(i)}.png")
        i+=1
    
    cap.release()
    cv2.destroyAllWindows()
    print("broke the video into frames")
    
    return frames, fps


def create_video(frames, fps, type):
    print("building video result")
    imgs = []
    for j, img in enumerate(frames):
        imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))

    mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
    return type + "_result.mp4"

    
def infer(f_in, interpolation, fps_output):
    
    fps_output = logscale(fps_output)
    # 1. break video into frames and get FPS
    #break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n)
    frames_list = f_in #break_vid[0]
    fps = 1 #break_vid[1]
    print(f"ORIGIN FPS: {fps}")
    n_frame = int(300) #limited to 300 frames
    #n_frame = len(frames_list)
    
    if n_frame >= len(frames_list):
        print("video is shorter than the cut value")
        n_frame = len(frames_list)
    
    # 2. prepare frames result arrays
    result_frames = []
    print("set stop frames to: " + str(n_frame))

    for idx, frame in enumerate(frames_list[0:int(n_frame)]):
        if idx < len(frames_list) - 1:
            next_frame = frames_list[idx+1]

            interpolated_frames = do_interpolation(frame, next_frame, interpolation, idx) # should return a list of interpolated frames
            break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", -1)
            print(break_interpolated_video[0])
            for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]):
                print(f"IMG:{img}")
                os.rename(img, f"{idx}_to_{idx+1}_{j}.png")
                result_frames.append(f"{idx}_to_{idx+1}_{j}.png")
            
            print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;")
            #print(f"CURRENT FRAMES: {result_frames}")
    result_frames.append(f"{frames_list[n_frame-1]}")
    final_vid = create_video(result_frames, fps_output, "interpolated")

    files = final_vid
    print("interpolated frames: " + str(len(frames_list)) + " -> " + str(len(result_frames)))
    cv2.destroyAllWindows()

    return final_vid, files


def remove_bg(fl, s, l, v, l_t):
    frame = cv2.imread(fl).astype(np.uint8)
    
    b = 5
    #subtract background (get scene with shadow)
    bg = cv2.medianBlur(frame, 255)
    
    frame_ = ((bg.astype(np.int16)-frame.astype(np.int16))+127).astype(np.uint8)
    frame_ = cv2.bilateralFilter(frame_, b*4, b*8, b*2)
    frame_ = cv2.medianBlur(frame_, b)
    
    element = cv2.getStructuringElement(cv2.MORPH_RECT, (2*b+1, 2*b+1), (b,b))
    frame_ = cv2.erode(cv2.dilate(frame_, element), element)

    
    #correct hue against light
    bg_gray = cv2.cvtColor(cv2.cvtColor(bg, cv2.COLOR_BGR2GRAY), cv2.COLOR_GRAY2BGR)
    bg_diff = (bg-bg_gray).astype(np.int16)
    frame_c = (frame.astype(np.int16)-bg_diff).astype(np.uint8)


    hsv_ = cv2.cvtColor(frame_c, cv2.COLOR_BGR2HSV)
    edges = cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), cv2.CV_64F)
    blur_s = np.zeros_like(edges)
    for i in range(2, frame.shape[0]-2):
        for j in range(2, frame.shape[1]-2):
            d = edges[i-2:i+2, j-2:j+2].var()
            blur_s[i,j] = d.astype(np.uint8)

    print(fl)
    print("detail")
    print(np.average(blur_s))
    print(np.median(blur_s))
    print("saturation")
    print(np.average(hsv_[:,:,1]))
    print(np.median(hsv_[:,:,1]))
    print("lightness")
    print(np.average(hsv_[:,:,2]))
    print(np.median(hsv_[:,:,2]))

    #remove regions of low saturation, lightness and detail (get scene without shadow)
    if l_t == "slider":
        m = cv2.inRange(hsv_, np.array([0,0,0]), np.array([180,s,l]))
        mask = cv2.inRange(blur_s, 0, v)
    elif l_t == "average":
        m = cv2.inRange(hsv_, np.array([0,0,0]), np.array([180, int(np.average(hsv_[:,:,1])), int(np.average(hsv_[:,:,2]))]))
        mask = cv2.inRange(blur_s, 0, int(np.average(blur_s)))
    elif l_t == "median":
        m = cv2.inRange(hsv_, np.array([0,0,0]), np.array([180, int(np.median(hsv_[:,:,1])), int(np.median(hsv_[:,:,2]))]))
        mask = cv2.inRange(blur_s, 0, int(np.median(blur_s)))
        
    masks = np.bitwise_and(m, mask)
    frame_[masks==0] = (0,0,0)
    
    
    m_ = frame_.reshape((-1,3))
    # convert to np.float32
    m_ = np.float32(m_)
    # define criteria, number of clusters(K) and apply kmeans()
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 16, 1.0)
    K = 3
    ret,label,center=cv2.kmeans(m_, K, None, criteria, 16, cv2.KMEANS_PP_CENTERS)
    # Now convert back into uint8, and make original image
    center = np.uint8(center)
    res = center[label.flatten()]
    frame_ = res.reshape((frame_.shape))
    
    
    #remove shadows at edges
    m_ = cv2.inRange(frame_, np.array([128,128,128]), np.array([255,255,255]))
    frame_[m_>0] = (255,255,255)
    cv2.rectangle(frame_,(0,0),(frame_.shape[1]-1,frame_.shape[0]-1),(255,255,255),7)
    mask = cv2.floodFill(frame_, None, (0, 0), 255, 0, 0, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
    # 255 << 8 tells to fill with the value 255)
    mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
    frame_[mask>0] = (127,127,127)
    m_ = cv2.inRange(frame_, np.array([1,1,1]), np.array([127,127,127]))
    frame_[m_>0] = (127,127,127)


    #shadow is black, bg is white, fg is gray
    frame_ = 255 - cv2.cvtColor(frame_, cv2.COLOR_BGR2GRAY)
    m_ = cv2.inRange(frame_, 255, 255)
    frame_[m_>0] = 127
    m_ = cv2.inRange(frame_, 128, 128)
    frame_[m_>0] = 255


    #apply mask to output
    m = cv2.inRange(frame, np.array([240,240,240]), np.array([255,255,255]))
    frame[m>0] = (239,239,239)
    m = cv2.inRange(frame, np.array([0,0,0]), np.array([15,15,15]))
    frame[m>0] = (16,16,16)
    frame[frame_==0] = (frame[frame_==0] / 17).astype(np.uint8)
    frame[frame_==255] = (255,255,255)

    cv2.imwrite(fl, frame)
    return fl

def logscale(linear):
    return int(math.pow(2, linear))

def linscale(linear):
    return int(math.log2(linear))

def sharpest(fl, i):
    break_vid = get_frames(fl, "vid_input_frame", "origin", i)

    frames = []
    blur_s = []
    for jdx, fr in enumerate(break_vid[0]):
        frames.append(cv2.imread(fr).astype(np.uint8))
        blur_s.append(cv2.Laplacian(cv2.cvtColor(frames[len(frames)-1], cv2.COLOR_BGR2GRAY), cv2.CV_64F).var())
        print(str(int(blur_s[jdx])))

    indx = np.argmax(blur_s)
    fl = break_vid[0][indx]

    n = 25
    half = int(n/2)
    if indx-half < 0:
        n = indx*2+1
    elif indx+half >= len(frames):
        n = (len(frames)-1-indx)*2+1
        
    #denoise
    frame = cv2.fastNlMeansDenoisingColoredMulti(
        srcImgs = frames,
        imgToDenoiseIndex = indx,
        temporalWindowSize = n,
        hColor = 5,
        templateWindowSize = 21,
        searchWindowSize = 21)

    cv2.imwrite(fl, frame)
    print(str(i) +'th file, sharpest frame: '+str(indx)+', name: '+fl)
    return fl

def sortFiles(e):
    e = e.split('/')
    return e[len(e)-1]

def loadf(f, s, l, v, l_t, r_bg):
    if f != None and f[0] != None:
        f.sort(key=sortFiles)
        fnew = []

        for i, fl in enumerate(f):
            ftype = fl.split('/')
            if ftype[len(ftype)-1].split('.')[1] == 'mp4':
                fl = sharpest(fl, i)

            if r_bg == True:
                fl = remove_bg(fl, s, l, v, l_t)
                
            fnew.append(fl)

        return fnew, fnew
    else:
        return f, f


title="""
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
            margin-bottom: 10px;
        "
        >
        <h1 style="font-weight: 600; margin-bottom: 7px;">
            Video interpolation from images with FILM
        </h1>
        
        </div>
       <p> This space uses FILM to generate interpolation frames in a set of image files you need to turn into a video.
       Limited to 300 uploaded frames, from the beginning of your input.<br />
       <a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> 
       </p>
    </div>
"""

with gr.Blocks() as demo:
    with gr.Column():
        gr.HTML(title)
        with gr.Row():
            with gr.Column():
                with gr.Accordion(label="Upload files here", open=True):
                    files_orig = gr.File(file_count="multiple", file_types=['image', '.mp4'])
                    files_input = gr.File(file_count="multiple", visible=False)
                gallery_input = gr.Gallery(label="Slideshow", preview=True, columns=8192, interactive=False)
                with gr.Accordion(label="Background removal settings", open=False):
                    with gr.Tab(label="Shadow maximums"):
                        max_s = gr.Slider(minimum=0, maximum=255, step=1, value=32, label="Saturation")
                        max_l = gr.Slider(minimum=0, maximum=255, step=1, value=64, label="Lightness")
                        max_v = gr.Slider(minimum=0, maximum=255, step=1, value=16, label="Detail")
                    lt = gr.Radio(label="Maximum is", choices=["average", "median", "slider"], value="slider")
                    rbg = gr.Checkbox(label="Remove background", value=True)
                files_orig.upload(fn=loadf, inputs=[files_orig, max_s, max_l, max_v, lt, rbg], outputs=[files_input, gallery_input])
                max_s.input(fn=loadf, inputs=[files_orig, max_s, max_l, max_v, lt, rbg], outputs=[files_input, gallery_input])
                max_l.input(fn=loadf, inputs=[files_orig, max_s, max_l, max_v, lt, rbg], outputs=[files_input, gallery_input])
                max_v.input(fn=loadf, inputs=[files_orig, max_s, max_l, max_v, lt, rbg], outputs=[files_input, gallery_input])
                
                with gr.Row():
                    interpolation_slider = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Interpolation Steps: ")
                    interpolation = gr.Number(value=1, show_label=False, interactive=False)
                    interpolation_slider.change(fn=logscale, inputs=[interpolation_slider], outputs=[interpolation])
                with gr.Row():
                    fps_output_slider = gr.Slider(minimum=0, maximum=5, step=1, value=0, label="FPS output: ")
                    fps_output = gr.Number(value=1, show_label=False, interactive=False)
                    fps_output_slider.change(fn=logscale, inputs=[fps_output_slider], outputs=[fps_output])
                submit_btn = gr.Button("Submit")
            
            with gr.Column():
                video_output = gr.Video()
                file_output = gr.File()
    
    gr.Examples(
        examples=[[
            ["./examples/0.png", "./examples/1.png", "./examples/2.png", "./examples/3.png", "./examples/4.png"], 
            32, 64, 16, "slider", True
        ]],
        fn=loadf,
        inputs=[files_orig, max_s, max_l, max_v, lt, rbg],
        outputs=[files_input, gallery_input],
        cache_examples=True
    )
    
    submit_btn.click(fn=infer, inputs=[files_input, interpolation_slider, fps_output_slider], outputs=[video_output, file_output])

demo.launch()