File size: 8,493 Bytes
ce026c7 582459e ce026c7 c5e4aef ce026c7 c5e4aef ce026c7 fd98fd4 98d8d0a d2307e4 1425010 ce026c7 f6676b6 d2307e4 fd98fd4 ce026c7 0e45ce4 5159a77 e3b4cd4 026d83a c50ba42 ce026c7 5159a77 54a97b2 026d83a 54a97b2 ce026c7 54a97b2 5159a77 e3b4cd4 5159a77 af52397 5159a77 0e45ce4 434296c 8d00343 5159a77 978f4b1 45242ca 104e59c d255d69 104e59c 6c453b9 0e45ce4 5159a77 31c6000 5159a77 d1555f9 5159a77 d96738b 31c6000 d96738b af230b3 d96738b 91dc1c2 5159a77 e304972 2167d4d 5159a77 5cc7c56 0e45ce4 31c6000 434296c 8c5de78 ad6513c 8c5de78 fd98fd4 a0fa656 329d584 af230b3 31c6000 378846e 5159a77 91dc1c2 6832791 bf824dd 30d0a53 5159a77 374f33e 459599c 27a6975 459599c a947b5f 84de2ce 31c6000 9bdb830 84de2ce 7c44990 c976d84 459599c 5159a77 84de2ce 5159a77 932dac6 84de2ce c39bb40 a9e79e7 5159a77 932dac6 0e45ce4 932dac6 7c44990 91dc1c2 9038b45 30d0a53 27a6975 2242a2f 0e4eb74 c976d84 27a6975 5159a77 84677ca 91dc1c2 c66b1cb 91dc1c2 31c6000 30d0a53 0418ceb 91dc1c2 5159a77 31c6000 ce026c7 5159a77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")
import math
import cv2
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download
from image_tools.sizes import resize_and_crop
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
from eval import interpolator, util
interpolator = interpolator.Interpolator(model, None)
ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)
def do_interpolation(frame1, frame2, interpolation, n):
print("tween frames: " + str(interpolation))
print(frame1, frame2)
input_frames = [frame1, frame2]
frames = list(
util.interpolate_recursively_from_files(
input_frames, int(interpolation), interpolator))
#print(frames)
mediapy.write_video(f"{n}_to_{n+1}_out.mp4", frames, fps=25)
return f"{n}_to_{n+1}_out.mp4"
def get_frames(video_in, step, name):
frames = []
cap = cv2.VideoCapture(video_in)
cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cfps = int(cap.get(cv2.CAP_PROP_FPS))
print(f'frames: {cframes}, fps: {cfps}')
#resize the video
#clip = VideoFileClip(video_in)
#check fps
#if cfps > 25:
# print("video rate is over 25, resetting to 25")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=25)
#else:
# print("video rate is OK")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=cfps)
#print("video resized to 1024 height")
# Opens the Video file with CV2
#cap = cv2.VideoCapture("video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
#if resize_w > 0:
#resize_h = resize_w / 2.0
#frame = cv2.resize(frame, (int(resize_w), int(resize_h)))
cv2.imwrite(f"{name}_{step}{str(i)}.png",frame)
frames.append(f"{name}_{step}{str(i)}.png")
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def create_video(frames, fps, type):
print("building video result")
imgs = []
for j, img in enumerate(frames):
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
return type + "_result.mp4"
def sharpest(f):
break_vid = get_frames(f, "vid_input_frame", "origin")
blur_s = []
for jdx, fr in enumerate(break_vid[0]):
blur_s.append(cv2.Laplacian(cv2.cvtColor(cv2.imread(fr).astype(np.uint8), cv2.COLOR_BGR2GRAY), cv2.CV_64F).var())
return break_vid[0][np.argmax(blur_s)]
def infer(f_in, interpolation, fps_output):
fps_output = logscale(fps_output)
# 1. break video into frames and get FPS
#break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n)
frames_list = f_in #break_vid[0]
fps = 1 #break_vid[1]
print(f"ORIGIN FPS: {fps}")
n_frame = int(300) #limited to 300 frames
#n_frame = len(frames_list)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
result_frames = []
print("set stop frames to: " + str(n_frame))
for idx, frame in enumerate(frames_list[0:int(n_frame)]):
if idx < len(frames_list) - 1:
next_frame = frames_list[idx+1]
ftype = frame.split('/')
if ftype[len(ftype)-1].split('.')[1] == 'mp4':
frame = sharpest(frame)
next_frame = sharpest(next_frame)
interpolated_frames = do_interpolation(frame, next_frame, interpolation, idx) # should return a list of interpolated frames
break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", 0)
print(break_interpolated_video[0])
for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]):
print(f"IMG:{img}")
os.rename(img, f"{idx}_to_{idx+1}_{j}.png")
result_frames.append(f"{idx}_to_{idx+1}_{j}.png")
print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;")
#print(f"CURRENT FRAMES: {result_frames}")
result_frames.append(f"{frames_list[n_frame-1]}")
final_vid = create_video(result_frames, fps_output, "interpolated")
files = final_vid
print("interpolated frames: " + str(len(frames_list)) + " -> " + str(len(result_frames)))
cv2.destroyAllWindows()
return final_vid, files
def logscale(linear):
return int(math.pow(2, linear))
def linscale(linear):
return int(math.log2(linear))
def sortFiles(e):
e = e.split('/')
return e[len(e)-1]
def loadf(f):
if f != None:
f.sort(key=sortFiles)
return f, f
title="""
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
"
>
<h1 style="font-weight: 600; margin-bottom: 7px;">
Video interpolation from images with FILM
</h1>
</div>
<p> This space uses FILM to generate interpolation frames in a set of image files you need to turn into a video.
Generation is limited to 300 uploaded frames, from the beginning of your input.<br />
<a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</p>
</div>
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
with gr.Accordion(label="Upload files here", open=True):
files_input = gr.File(file_count="multiple", file_types=['image', '.mp4'])
gallery_input = gr.Gallery(label="Slideshow", preview=True, columns=8192, interactive=False)
files_input.change(fn=loadf, inputs=[files_input], outputs=[files_input, gallery_input])
with gr.Row():
interpolation_slider = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Interpolation Steps: ")
interpolation = gr.Number(value=1, show_label=False, interactive=False)
interpolation_slider.change(fn=logscale, inputs=[interpolation_slider], outputs=[interpolation])
with gr.Row():
fps_output_slider = gr.Slider(minimum=0, maximum=5, step=1, value=0, label="FPS output: ")
fps_output = gr.Number(value=1, show_label=False, interactive=False)
fps_output_slider.change(fn=logscale, inputs=[fps_output_slider], outputs=[fps_output])
submit_btn = gr.Button("Submit")
with gr.Column():
video_output = gr.Video()
file_output = gr.File()
gr.Examples(
examples=[[["./examples/0.png", "./examples/1.png", "./examples/2.png", "./examples/3.png", "./examples/4.png"], 1, 0]],
fn=infer,
inputs=[files_input, interpolation_slider, fps_output_slider],
outputs=[video_output, file_output],
cache_examples=True
)
submit_btn.click(fn=infer, inputs=[files_input, interpolation_slider, fps_output_slider], outputs=[video_output, file_output])
demo.launch() |