Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,214 Bytes
780389c 8b2cbe6 1e8e71b 6a95f1f 61732db ba2960a 8b2cbe6 6a95f1f 4467a7b ccc35d4 619c27a 4467a7b 619c27a 1e8e71b 6a95f1f b7278d2 6a95f1f 619c27a 6a95f1f 61732db 4467a7b 6a95f1f 61732db 6a95f1f 61732db 4467a7b 6a95f1f 4467a7b 6a95f1f 619c27a 6a95f1f 619c27a 61732db 6a95f1f ba2960a 6a95f1f 619c27a 4467a7b 6a95f1f 9740995 67e08d4 8b2cbe6 ba2960a 8b2cbe6 9740995 8b2cbe6 6a95f1f 8b2cbe6 9740995 619c27a 67e08d4 619c27a ba2960a 619c27a ba2960a 619c27a ba2960a 619c27a 9740995 ba2960a 9740995 ccc35d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import spaces
import gradio as gr
import cv2
from PIL import Image
import torch
import time
import numpy as np
from gradio_webrtc import WebRTC
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
from draw_boxes import draw_bounding_boxes
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd").to("cuda")
SUBSAMPLE = 2
@spaces.GPU
def stream_object_detection(video, conf_threshold):
cap = cv2.VideoCapture(video)
while iterating:
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if n_frames % SUBSAMPLE == 0:
batch.append(frame)
if len(batch) == 2 * desired_fps:
inputs = image_processor(images=batch, return_tensors="pt").to("cuda")
print(f"starting batch of size {len(batch)}")
start = time.time()
with torch.no_grad():
outputs = model(**inputs)
end = time.time()
print("time taken for inference", end - start)
start = time.time()
boxes = image_processor.post_process_object_detection(
outputs,
target_sizes=torch.tensor([(height, width)] * len(batch)),
threshold=conf_threshold)
for i, (array, box) in enumerate(zip(batch, boxes)):
pil_image = draw_bounding_boxes(Image.fromarray(array), box, model, conf_threshold)
frame = np.array(pil_image)
# Convert RGB to BGR
frame = frame[:, :, ::-1].copy()
yield frame
batch = []
end = time.time()
print("time taken for processing boxes", end - start)
iterating, frame = cap.read()
n_frames += 1
with gr.Blocks() as app:
gr.HTML(
"""
<h1 style='text-align: center'>
Video Object Detection with RT-DETR (Powered by WebRTC ⚡️)
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
<a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>github</a>
</h3>
""")
with gr.Row():
with gr.Column():
video = gr.Video(label="Video Source")
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.30,
)
with gr.Column():
output = WebRTC(label="WebRTC Stream",
rtc_configuration=None,
mode="receive",
modality="video")
detect = gr.Button("Detect", variant="primary")
output.stream(
fn=stream_object_detection,
inputs=[video, conf_threshold],
outputs=[output],
trigger=detect.click
)
gr.Examples(examples=["video_example.mp4"],
inputs=[video])
if __name__ == '__main__':
app.launch()
|