Spaces:
Sleeping
Sleeping
import gradio as gr | |
import shap | |
from transformers import pipeline | |
import matplotlib | |
import matplotlib.pyplot as plt | |
matplotlib.use('Agg') | |
sentiment_classifier = pipeline("text-classification", return_all_scores=True) | |
def classifier(text): | |
pred = sentiment_classifier(text) | |
return {p["label"]: p["score"] for p in pred[0]} | |
def interpretation_function(text): | |
explainer = shap.Explainer(sentiment_classifier) | |
shap_values = explainer([text]) | |
# Dimensions are (batch size, text size, number of classes) | |
# Since we care about positive sentiment, use index 1 | |
scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1])) | |
scores_desc = sorted(scores, key=lambda t: t[1])[::-1] | |
# Filter out empty string added by shap | |
scores_desc = [t for t in scores_desc if t[0] != ""] | |
fig_m = plt.figure() | |
plt.bar(x=[s[0] for s in scores_desc[:5]], | |
height=[s[1] for s in scores_desc[:5]]) | |
plt.title("Top words contributing to positive sentiment") | |
plt.ylabel("Shap Value") | |
plt.xlabel("Word") | |
return {"original": text, "interpretation": scores}, fig_m | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text") | |
with gr.Row(): | |
classify = gr.Button("Classify Sentiment") | |
interpret = gr.Button("Interpret") | |
with gr.Column(): | |
label = gr.Label(label="Predicted Sentiment") | |
with gr.Column(): | |
with gr.Tabs(): | |
with gr.TabItem("Display interpretation with built-in component"): | |
interpretation = gr.components.Interpretation(input_text) | |
with gr.TabItem("Display interpretation with plot"): | |
interpretation_plot = gr.Plot() | |
classify.click(classifier, input_text, label) | |
interpret.click(interpretation_function, input_text, [interpretation, interpretation_plot]) | |
if __name__ == "__main__": | |
demo.launch() |