Spaces:
Runtime error
Runtime error
# Copyright (c) Microsoft Corporation. | |
# Licensed under the MIT license. | |
# | |
# Copyright (c) 2022, Tri Dao, [email protected]. | |
# Licensed under the BSD 3-Clause License. | |
from dataclasses import dataclass, field | |
from typing import Any, Dict, Optional, Union, Tuple | |
import math | |
import torch | |
import torch.nn as nn | |
from einops import rearrange, repeat | |
from transformers import PretrainedConfig, PreTrainedModel | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from .configuration_moondream import PhiConfig | |
FusedDense = None | |
class InferenceParams: | |
max_seqlen: int | |
max_batch_size: int | |
seqlen_offset: int = 0 | |
batch_size_offset: int = 0 | |
key_value_memory_dict: Dict[str, Any] = field(default_factory=dict) | |
lengths_per_sample: torch.Tensor = None | |
class Embedding(nn.Module): | |
def __init__(self, config: PretrainedConfig): | |
super().__init__() | |
self.wte = nn.Embedding(config.vocab_size, config.n_embd) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: | |
return self.drop(self.wte(input_ids.view(-1, input_ids.size(-1)))) | |
def _apply_rotary_emb(x, cos, sin): | |
seqlen, rotary_dim = x.size(1), cos.size(1) * 2 | |
x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:] | |
x1, x2 = x_rot.chunk(2, dim=-1) | |
c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1) | |
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1) | |
return torch.cat([x_rot.to(x.dtype), x_pass], dim=-1) | |
def _apply_rotary_emb_kv( | |
kv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor | |
) -> torch.FloatTensor: | |
seqlen, rotary_dim = kv.shape[1], cos.shape[-1] * 2 | |
k_rot = kv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1) | |
k_pass = kv[:, :, 0, :, rotary_dim:] | |
c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1) | |
k_rot = torch.cat( | |
[k_rot[0] * c - k_rot[1] * s, k_rot[0] * s + k_rot[1] * c], dim=-1 | |
) | |
return torch.cat( | |
[torch.cat([k_rot, k_pass], dim=-1).unsqueeze(2), kv[:, :, 1:2, :, :]], dim=2 | |
) | |
def _apply_rotary_emb_qkv( | |
qkv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor | |
) -> torch.FloatTensor: | |
seqlen, rotary_dim = qkv.shape[1], cos.shape[1] * 2 | |
c = cos[:seqlen].unsqueeze(1) | |
s = sin[:seqlen].unsqueeze(1) | |
qkv_rot = torch.stack( | |
[ | |
torch.cat( | |
[ | |
qkv[:, :, i, :, : rotary_dim // 2] * c | |
- qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * s, | |
qkv[:, :, i, :, : rotary_dim // 2] * s | |
+ qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * c, | |
], | |
dim=-1, | |
).to(qkv.dtype) | |
for i in range(2) | |
], | |
dim=2, | |
) | |
qkv_pass = qkv[:, :, :2, :, rotary_dim:].unsqueeze(2) | |
qkv_v = qkv[:, :, 2:3, :, :] | |
return torch.cat([qkv_rot, qkv_pass, qkv_v], dim=2) | |
class RotaryEmbedding(nn.Module): | |
# Enhanced Transformer with Rotary Position Embedding (https://arxiv.org/pdf/2104.09864.pdf) | |
def __init__( | |
self, | |
dim: int, | |
base: int = 10000, | |
scale_base: Optional[float] = None, | |
pos_idx_in_fp32: bool = True, | |
max_position_embeddings: int = 2048, | |
device: Optional[str] = None, | |
) -> None: | |
super().__init__() | |
# fp32 is preferred since the output of `torch.arange` can be quite large and bf16 would lose a lot of precision | |
self.dim, self.base, self.pos_idx_in_fp32, self.device = ( | |
dim, | |
float(base), | |
pos_idx_in_fp32, | |
device, | |
) | |
self.max_position_embeddings = max_position_embeddings | |
if scale_base is not None: | |
raise NotImplementedError | |
# Generate and register the non-trainable buffers | |
self.register_buffer( | |
"inv_freq", self._compute_inv_freq(device), persistent=False | |
) | |
self.register_buffer( | |
"scale", self._calculate_scale(dim, scale_base, device), persistent=False | |
) | |
self._update_cos_sin_cache( | |
max_position_embeddings, device=device, dtype=torch.float32 | |
) | |
def _calculate_scale(self, dim, scale_base, device): | |
return ( | |
( | |
( | |
torch.arange(0, dim, 2, device=device, dtype=torch.float32) | |
+ 0.4 * dim | |
) | |
/ (1.4 * dim) | |
) | |
if scale_base is not None | |
else None | |
) | |
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor: | |
return 1.0 / ( | |
self.base | |
** ( | |
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) | |
/ self.dim | |
) | |
) | |
def _update_cos_sin_cache( | |
self, | |
seqlen: int, | |
device: Optional[str] = None, | |
dtype: Optional[torch.dtype] = None, | |
) -> None: | |
self._seq_len_cached = seqlen | |
t = torch.arange( | |
seqlen, | |
device=device, | |
dtype=torch.float32 if self.pos_idx_in_fp32 else self.inv_freq.dtype, | |
) | |
inv_freq = ( | |
self._compute_inv_freq(device=device) | |
if self.pos_idx_in_fp32 and self.inv_freq.dtype != torch.float32 | |
else self.inv_freq | |
) | |
freqs = torch.outer(t, inv_freq) | |
def apply_scale(freqs, scale, operator, dtype): | |
result = operator(freqs) | |
return (result / scale).to(dtype) if scale is not None else result.to(dtype) | |
if scale := self.scale: | |
power = ( | |
torch.arange(seqlen, dtype=scale.dtype, device=scale.device) | |
- seqlen // 2 | |
) / self.scale_base | |
scale = scale.to(device=power.device) ** power.unsqueeze(1) | |
self._cos_cached = apply_scale( | |
freqs, 1 / scale if scale is not None else None, torch.cos, dtype | |
) | |
self._sin_cached = apply_scale( | |
freqs, 1 / scale if scale is not None else None, torch.sin, dtype | |
) | |
if scale is not None: | |
self._cos_k_cached = apply_scale(freqs, scale, torch.cos, dtype) | |
self._sin_k_cached = apply_scale(freqs, scale, torch.sin, dtype) | |
def forward( | |
self, | |
qkv: torch.Tensor, | |
kv: Optional[torch.Tensor] = None, | |
seqlen_offset: int = 0, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
should_update = ( | |
self._seq_len_cached < qkv.shape[1] + seqlen_offset | |
or self._cos_cached.device != qkv.device | |
or self._cos_cached.dtype != qkv.dtype | |
or (self.training and self._cos_cached.is_inference()) | |
) | |
if should_update: | |
self._update_cos_sin_cache( | |
qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype | |
) | |
offset_cos = self._cos_cached[seqlen_offset:] | |
offset_sin = self._sin_cached[seqlen_offset:] | |
if kv is None: | |
return _apply_rotary_emb_qkv(qkv, offset_cos, offset_sin) | |
else: | |
return _apply_rotary_emb(qkv, offset_cos, offset_sin), _apply_rotary_emb_kv( | |
kv, offset_cos, offset_sin | |
) | |
class MLP(nn.Module): | |
def __init__( | |
self, | |
config: PretrainedConfig, | |
n_inner: Optional[int] = None, | |
act_fn: Optional[str] = None, | |
) -> None: | |
super().__init__() | |
n_inner = n_inner or getattr(config, "n_inner", None) or 4 * config.n_embd | |
act_fn = act_fn or config.activation_function | |
self.fc1 = nn.Linear(config.n_embd, n_inner) | |
self.fc2 = nn.Linear(n_inner, config.n_embd) | |
self.act = ACT2FN[act_fn] | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
return self.fc2(self.act(self.fc1(hidden_states))) | |
# Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py) | |
class SelfAttention(nn.Module): | |
def __init__( | |
self, | |
causal: bool = True, | |
softmax_scale: Optional[float] = None, | |
attention_dropout: float = 0.0, | |
): | |
super().__init__() | |
self.causal = causal | |
self.softmax_scale = softmax_scale | |
self.drop = nn.Dropout(attention_dropout) | |
def forward( | |
self, | |
qkv: torch.FloatTensor, | |
causal: Optional[bool] = None, | |
key_padding_mask: Optional[torch.BoolTensor] = None, | |
): | |
q, k, v = qkv.chunk(3, dim=-1) | |
scale = self.softmax_scale or 1.0 / q.size(-1) ** 0.5 | |
scores = ( | |
torch.einsum("bthd,bshd->bhts", q.to(torch.float32), k.to(torch.float32)) | |
* scale | |
) | |
if causal or self.causal: | |
scores.triu_(1).fill_(-10000.0) | |
if key_padding_mask is not None: | |
scores.masked_fill_(key_padding_mask[:, None, None, :], -10000.0) | |
attn = self.drop(torch.softmax(scores, dim=-1).to(v.dtype)) | |
return torch.einsum("bhts,bshd->bthd", attn, v) | |
# Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py) | |
class CrossAttention(nn.Module): | |
def __init__(self, causal=True, softmax_scale=None, attention_dropout=0.0): | |
super().__init__() | |
self.causal = causal | |
self.softmax_scale = softmax_scale | |
self.drop = nn.Dropout(attention_dropout) | |
def forward( | |
self, | |
q: torch.FloatTensor, | |
kv: torch.FloatTensor, | |
causal: bool = None, | |
key_padding_mask: Optional[torch.BoolTensor] = None, | |
) -> torch.FloatTensor: | |
batch_size, seqlen_q = q.shape[0], q.shape[1] | |
seqlen_k = kv.shape[1] | |
if kv.shape[3] != q.shape[2]: | |
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3]) | |
k, v = kv.unbind(dim=2) | |
q = q.to(torch.float32) | |
k = k.to(torch.float32) | |
causal = self.causal if causal is None else causal | |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) | |
# Autocast is manually disabled to avoid `torch.einsum` performing the operation using float16, which might lead to overflow | |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) | |
if key_padding_mask is not None: | |
padding_mask = torch.full( | |
(batch_size, seqlen_k), | |
-10000.0, | |
dtype=scores.dtype, | |
device=scores.device, | |
) | |
padding_mask.masked_fill_(key_padding_mask, 0.0) | |
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") | |
if causal: | |
rows = rearrange( | |
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1" | |
) | |
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long) | |
causal_mask = cols > rows + seqlen_k - seqlen_q | |
scores = scores.masked_fill(causal_mask, -10000.0) | |
attention = torch.softmax(scores, dim=-1).to(v.dtype) | |
attention = self.drop(attention) | |
output = torch.einsum("bhts,bshd->bthd", attention, v) | |
return output | |
def _find_mha_dims( | |
config: PretrainedConfig, | |
n_head: Optional[int] = None, | |
n_head_kv: Optional[int] = None, | |
head_dim: Optional[int] = None, | |
) -> Tuple[int, int]: | |
if n_head is None and head_dim is None: | |
head_dim = config.n_embd // config.n_head | |
n_head = config.n_head | |
elif n_head is None or head_dim is None: | |
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.") | |
if n_head_kv is None: | |
n_head_kv = getattr(config, "n_head_kv", None) or n_head | |
return n_head, n_head_kv, head_dim | |
def _update_kv_cache( | |
kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int | |
) -> torch.FloatTensor: | |
num_heads, head_dim = kv.shape[-2:] | |
layer_memory = inference_params.key_value_memory_dict.setdefault( | |
layer_idx, | |
torch.empty( | |
inference_params.max_batch_size, | |
inference_params.max_seqlen, | |
2, | |
num_heads, | |
head_dim, | |
dtype=kv.dtype, | |
device=kv.device, | |
), | |
) | |
batch_slice = slice( | |
inference_params.batch_size_offset, | |
inference_params.batch_size_offset + kv.shape[0], | |
) | |
seqlen_slice = slice( | |
inference_params.seqlen_offset, inference_params.seqlen_offset + kv.shape[1] | |
) | |
if seqlen_slice.stop >= inference_params.max_seqlen: | |
layer_memory = torch.cat((layer_memory, kv), dim=1) | |
inference_params.key_value_memory_dict[layer_idx] = layer_memory | |
layer_memory[batch_slice, seqlen_slice, ...] = kv | |
return layer_memory[batch_slice, : seqlen_slice.stop, ...] | |
# Multi-head attention layer with rotary embeddings | |
class MHA(nn.Module): | |
def __init__( | |
self, | |
config, | |
dtype=None, | |
device=None, | |
rotary_dim=None, | |
rotary_base=10000.0, | |
rotary_scale_base=None, | |
n_head=None, | |
n_head_kv=None, | |
head_dim=None, | |
bias=True, | |
causal=True, | |
softmax_scale=None, | |
layer_idx=None, | |
return_residual=False, | |
checkpointing=False, | |
): | |
super().__init__() | |
# Set rotary embedding if specified | |
self.rotary_dim = rotary_dim or getattr(config, "rotary_dim", 0) | |
if self.rotary_dim: | |
self.rotary_emb = RotaryEmbedding( | |
self.rotary_dim, | |
base=rotary_base, | |
scale_base=rotary_scale_base, | |
device=device, | |
max_position_embeddings=config.n_positions, | |
) | |
# Determine MHA dims from arguments or config | |
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims( | |
config, n_head, n_head_kv, head_dim | |
) | |
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv) | |
hidden_size = config.n_embd | |
# Choose Linear class based on config, FusedDense is optional | |
LinearClass = ( | |
FusedDense if config.fused_dense and FusedDense is not None else nn.Linear | |
) | |
self.Wqkv = LinearClass( | |
hidden_size, op_size, bias=bias, device=device, dtype=dtype | |
) | |
self.out_proj = LinearClass( | |
hidden_size, hidden_size, bias=bias, device=device, dtype=dtype | |
) | |
# Initialize attention mechanisms | |
attn_kwargs = { | |
"causal": causal, | |
"softmax_scale": softmax_scale, | |
"attention_dropout": config.attn_pdrop, | |
} | |
self.inner_attn = SelfAttention(**attn_kwargs) | |
self.inner_cross_attn = CrossAttention(**attn_kwargs) | |
self.layer_idx = layer_idx | |
self.return_residual = return_residual | |
self.checkpointing = checkpointing | |
def _forward_self_attn( | |
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor] | |
) -> torch.FloatTensor: | |
qkv = rearrange( | |
self.Wqkv(x), "... (three h d) -> ... three h d", three=3, d=self.head_dim | |
) | |
if self.rotary_dim > 0: | |
qkv = self.rotary_emb(qkv) | |
attn_func = ( | |
torch.utils.checkpoint.checkpoint | |
if self.checkpointing | |
else lambda f, *args, **kwargs: f(*args, **kwargs) | |
) | |
return attn_func(self.inner_attn, qkv, key_padding_mask=key_padding_mask) | |
def _forward_cross_attn( | |
self, | |
x: torch.FloatTensor, | |
past_key_values: Optional[InferenceParams], | |
key_padding_mask: Optional[torch.BoolTensor], | |
) -> torch.FloatTensor: | |
qkv = self.Wqkv(x) | |
q, kv = ( | |
qkv[..., : self.n_head * self.head_dim], | |
qkv[..., self.n_head * self.head_dim :], | |
) | |
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) | |
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) | |
seqlen_offset = ( | |
past_key_values.seqlen_offset if past_key_values is not None else 0 | |
) | |
causal = None if seqlen_offset == 0 else False | |
if self.rotary_dim > 0: | |
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset) | |
if past_key_values is not None: | |
kv = _update_kv_cache(kv, past_key_values, self.layer_idx) | |
attn_func = ( | |
torch.utils.checkpoint.checkpoint | |
if self.checkpointing | |
else lambda fn, *args, **kwargs: fn(*args, **kwargs) | |
) | |
return attn_func( | |
self.inner_cross_attn, | |
q, | |
kv, | |
key_padding_mask=key_padding_mask, | |
causal=causal, | |
) | |
def forward( | |
self, | |
x: torch.FloatTensor, | |
past_key_values: Optional[InferenceParams] = None, | |
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
attention_mask = attention_mask.bool() if attention_mask is not None else None | |
use_cross_attn = self.n_head != self.n_head_kv or past_key_values is not None | |
attn_output_function = ( | |
self._forward_cross_attn if use_cross_attn else self._forward_self_attn | |
) | |
attn_output = ( | |
attn_output_function(x, past_key_values, attention_mask) | |
if use_cross_attn | |
else attn_output_function(x, attention_mask) | |
) | |
output = self.out_proj(rearrange(attn_output, "... h d -> ... (h d)")) | |
return (output, x) if self.return_residual else output | |
# Parallel block. This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen). | |
class ParallelBlock(nn.Module): | |
def __init__(self, config: PretrainedConfig, block_idx: Optional[int] = None): | |
super().__init__() | |
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
self.block_idx = block_idx | |
self.mixer = MHA(config, layer_idx=block_idx) | |
self.mlp = MLP(config) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
attention_mask: Optional[torch.BoolTensor] = None, | |
) -> torch.FloatTensor: | |
residual = hidden_states | |
hidden_states = self.ln(hidden_states) | |
attn_outputs = self.mixer( | |
hidden_states, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
) | |
if isinstance(attn_outputs, tuple): | |
attn_outputs = attn_outputs[0] | |
attn_outputs = self.resid_dropout(attn_outputs) | |
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) | |
return attn_outputs + feed_forward_hidden_states + residual | |
class CausalLMHead(nn.Module): | |
"""Causal Language Modeling head. Simplified version.""" | |
def __init__(self, config): | |
super().__init__() | |
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
self.linear = nn.Linear(config.n_embd, config.vocab_size) | |
def forward(self, hidden_states): | |
return self.linear(self.ln(hidden_states)).to(torch.float32) | |
# Improving Language Understanding by Generative Pre-Training | |
# (https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf) | |
class CausalLMLoss(nn.Module): | |
def __init__(self, shift_labels: bool = True) -> None: | |
super().__init__() | |
self.shift_labels = shift_labels | |
self.loss_fct = nn.CrossEntropyLoss() | |
def forward( | |
self, logits: torch.FloatTensor, labels: torch.LongTensor | |
) -> torch.FloatTensor: | |
if self.shift_labels: | |
logits, labels = logits[..., :-1, :], labels[..., 1:] | |
return self.loss_fct(logits.reshape(-1, logits.size(-1)), labels.reshape(-1)) | |
class PhiPreTrainedModel(PreTrainedModel): | |
config_class = PhiConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = False | |
_no_split_modules = ["ParallelBlock"] | |
def __init__(self, *inputs, **kwargs) -> None: | |
super().__init__(*inputs, **kwargs) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids: torch.LongTensor = None, | |
inputs_embeds: torch.FloatTensor = None, | |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, | |
**kwargs, | |
) -> Dict[str, Any]: | |
if input_ids is None and inputs_embeds is None: | |
raise ValueError( | |
"You have to specify either `input_ids` or `inputs_embeds`." | |
) | |
max_batch_size = ( | |
inputs_embeds.shape[0] if inputs_embeds is not None else input_ids.shape[0] | |
) | |
seqlen_offset = ( | |
inputs_embeds.shape[1] + input_ids.shape[1] - 2 | |
if inputs_embeds is not None | |
else input_ids.shape[1] - 1 | |
) | |
args = ( | |
{"inputs_embeds": inputs_embeds} | |
if inputs_embeds is not None | |
else {"input_ids": input_ids} | |
) | |
if not isinstance(past_key_values, InferenceParams): | |
past_key_values = InferenceParams( | |
max_seqlen=self.config.n_positions, | |
max_batch_size=max_batch_size, | |
seqlen_offset=0, | |
batch_size_offset=0, | |
key_value_memory_dict={}, | |
lengths_per_sample=None, | |
) | |
else: | |
past_key_values.seqlen_offset = seqlen_offset | |
args = {"input_ids": input_ids[:, -1].unsqueeze(-1)} | |
return { | |
**args, | |
"past_key_values": past_key_values, | |
"attention_mask": attention_mask, | |
} | |
class PhiModel(PhiPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [""] | |
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] | |
def __init__(self, config: PhiConfig) -> None: | |
super().__init__(config) | |
self.embd = Embedding(config) | |
self.h = nn.ModuleList( | |
[ParallelBlock(config, block_idx=i) for i in range(config.n_layer)] | |
) | |
self.gradient_checkpointing = config.gradient_checkpointing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Embedding: | |
return self.embd.wte | |
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: | |
self.embd.wte = new_embeddings | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
inputs_embeds: torch.FloatTensor = None, | |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
attention_mask: Optional[torch.BoolTensor] = None, | |
) -> torch.FloatTensor: | |
if (input_ids is None) == (inputs_embeds is None): | |
raise ValueError("Specify exactly one of `input_ids` or `inputs_embeds`.") | |
hidden_states = self.embd(input_ids) if input_ids is not None else inputs_embeds | |
for layer in self.h: | |
func = layer.__call__ if self.gradient_checkpointing else layer | |
args = (hidden_states, past_key_values, attention_mask) | |
hidden_states = ( | |
torch.utils.checkpoint.checkpoint(func, *args, use_reentrant=True) | |
if self.gradient_checkpointing | |
else func(*args) | |
) | |
return hidden_states | |
class PhiForCausalLM(PhiPreTrainedModel): | |
_keys_to_ignore_on_load_missing, _keys_to_ignore_on_load_unexpected = ( | |
[""], | |
[r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"], | |
) | |
def __init__(self, config: PhiConfig) -> None: | |
super().__init__(config) | |
self.transformer = PhiModel(config) | |
self.lm_head = CausalLMHead(config) | |
self.loss = CausalLMLoss() | |
self.post_init() | |
def get_output_embeddings(self) -> nn.Linear: | |
return self.lm_head.linear | |
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: | |
self.lm_head.linear = new_embeddings | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
inputs_embeds: torch.FloatTensor = None, | |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
attention_mask: Optional[torch.BoolTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> CausalLMOutputWithPast: | |
hidden_states = self.transformer( | |
input_ids=input_ids, | |
inputs_embeds=inputs_embeds, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
) | |
lm_logits = self.lm_head(hidden_states) | |
loss = self.loss(lm_logits, labels) if labels is not None else None | |
return CausalLMOutputWithPast( | |
loss=loss, logits=lm_logits, past_key_values=past_key_values | |
) | |