Spaces:
Runtime error
Runtime error
| # Copyright (c) Microsoft Corporation. | |
| # Licensed under the MIT license. | |
| # | |
| # Copyright (c) 2022, Tri Dao, [email protected]. | |
| # Licensed under the BSD 3-Clause License. | |
| from dataclasses import dataclass, field | |
| from typing import Any, Dict, Optional, Union, Tuple | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange, repeat | |
| from transformers import PretrainedConfig, PreTrainedModel | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import CausalLMOutputWithPast | |
| from .configuration_moondream import PhiConfig | |
| FusedDense = None | |
| class InferenceParams: | |
| max_seqlen: int | |
| max_batch_size: int | |
| seqlen_offset: int = 0 | |
| batch_size_offset: int = 0 | |
| key_value_memory_dict: Dict[str, Any] = field(default_factory=dict) | |
| lengths_per_sample: torch.Tensor = None | |
| class Embedding(nn.Module): | |
| def __init__(self, config: PretrainedConfig): | |
| super().__init__() | |
| self.wte = nn.Embedding(config.vocab_size, config.n_embd) | |
| self.drop = nn.Dropout(config.embd_pdrop) | |
| def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: | |
| return self.drop(self.wte(input_ids.view(-1, input_ids.size(-1)))) | |
| def _apply_rotary_emb(x, cos, sin): | |
| seqlen, rotary_dim = x.size(1), cos.size(1) * 2 | |
| x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:] | |
| x1, x2 = x_rot.chunk(2, dim=-1) | |
| c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1) | |
| x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1) | |
| return torch.cat([x_rot.to(x.dtype), x_pass], dim=-1) | |
| def _apply_rotary_emb_kv( | |
| kv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor | |
| ) -> torch.FloatTensor: | |
| seqlen, rotary_dim = kv.shape[1], cos.shape[-1] * 2 | |
| k_rot = kv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1) | |
| k_pass = kv[:, :, 0, :, rotary_dim:] | |
| c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1) | |
| k_rot = torch.cat( | |
| [k_rot[0] * c - k_rot[1] * s, k_rot[0] * s + k_rot[1] * c], dim=-1 | |
| ) | |
| return torch.cat( | |
| [torch.cat([k_rot, k_pass], dim=-1).unsqueeze(2), kv[:, :, 1:2, :, :]], dim=2 | |
| ) | |
| def _apply_rotary_emb_qkv( | |
| qkv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor | |
| ) -> torch.FloatTensor: | |
| seqlen, rotary_dim = qkv.shape[1], cos.shape[1] * 2 | |
| c = cos[:seqlen].unsqueeze(1) | |
| s = sin[:seqlen].unsqueeze(1) | |
| qkv_rot = torch.stack( | |
| [ | |
| torch.cat( | |
| [ | |
| qkv[:, :, i, :, : rotary_dim // 2] * c | |
| - qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * s, | |
| qkv[:, :, i, :, : rotary_dim // 2] * s | |
| + qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * c, | |
| ], | |
| dim=-1, | |
| ).to(qkv.dtype) | |
| for i in range(2) | |
| ], | |
| dim=2, | |
| ) | |
| qkv_pass = qkv[:, :, :2, :, rotary_dim:].unsqueeze(2) | |
| qkv_v = qkv[:, :, 2:3, :, :] | |
| return torch.cat([qkv_rot, qkv_pass, qkv_v], dim=2) | |
| class RotaryEmbedding(nn.Module): | |
| # Enhanced Transformer with Rotary Position Embedding (https://arxiv.org/pdf/2104.09864.pdf) | |
| def __init__( | |
| self, | |
| dim: int, | |
| base: int = 10000, | |
| scale_base: Optional[float] = None, | |
| pos_idx_in_fp32: bool = True, | |
| max_position_embeddings: int = 2048, | |
| device: Optional[str] = None, | |
| ) -> None: | |
| super().__init__() | |
| # fp32 is preferred since the output of `torch.arange` can be quite large and bf16 would lose a lot of precision | |
| self.dim, self.base, self.pos_idx_in_fp32, self.device = ( | |
| dim, | |
| float(base), | |
| pos_idx_in_fp32, | |
| device, | |
| ) | |
| self.max_position_embeddings = max_position_embeddings | |
| if scale_base is not None: | |
| raise NotImplementedError | |
| # Generate and register the non-trainable buffers | |
| self.register_buffer( | |
| "inv_freq", self._compute_inv_freq(device), persistent=False | |
| ) | |
| self.register_buffer( | |
| "scale", self._calculate_scale(dim, scale_base, device), persistent=False | |
| ) | |
| self._update_cos_sin_cache( | |
| max_position_embeddings, device=device, dtype=torch.float32 | |
| ) | |
| def _calculate_scale(self, dim, scale_base, device): | |
| return ( | |
| ( | |
| ( | |
| torch.arange(0, dim, 2, device=device, dtype=torch.float32) | |
| + 0.4 * dim | |
| ) | |
| / (1.4 * dim) | |
| ) | |
| if scale_base is not None | |
| else None | |
| ) | |
| def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor: | |
| return 1.0 / ( | |
| self.base | |
| ** ( | |
| torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) | |
| / self.dim | |
| ) | |
| ) | |
| def _update_cos_sin_cache( | |
| self, | |
| seqlen: int, | |
| device: Optional[str] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ) -> None: | |
| self._seq_len_cached = seqlen | |
| t = torch.arange( | |
| seqlen, | |
| device=device, | |
| dtype=torch.float32 if self.pos_idx_in_fp32 else self.inv_freq.dtype, | |
| ) | |
| inv_freq = ( | |
| self._compute_inv_freq(device=device) | |
| if self.pos_idx_in_fp32 and self.inv_freq.dtype != torch.float32 | |
| else self.inv_freq | |
| ) | |
| freqs = torch.outer(t, inv_freq) | |
| def apply_scale(freqs, scale, operator, dtype): | |
| result = operator(freqs) | |
| return (result / scale).to(dtype) if scale is not None else result.to(dtype) | |
| if scale := self.scale: | |
| power = ( | |
| torch.arange(seqlen, dtype=scale.dtype, device=scale.device) | |
| - seqlen // 2 | |
| ) / self.scale_base | |
| scale = scale.to(device=power.device) ** power.unsqueeze(1) | |
| self._cos_cached = apply_scale( | |
| freqs, 1 / scale if scale is not None else None, torch.cos, dtype | |
| ) | |
| self._sin_cached = apply_scale( | |
| freqs, 1 / scale if scale is not None else None, torch.sin, dtype | |
| ) | |
| if scale is not None: | |
| self._cos_k_cached = apply_scale(freqs, scale, torch.cos, dtype) | |
| self._sin_k_cached = apply_scale(freqs, scale, torch.sin, dtype) | |
| def forward( | |
| self, | |
| qkv: torch.Tensor, | |
| kv: Optional[torch.Tensor] = None, | |
| seqlen_offset: int = 0, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| should_update = ( | |
| self._seq_len_cached < qkv.shape[1] + seqlen_offset | |
| or self._cos_cached.device != qkv.device | |
| or self._cos_cached.dtype != qkv.dtype | |
| or (self.training and self._cos_cached.is_inference()) | |
| ) | |
| if should_update: | |
| self._update_cos_sin_cache( | |
| qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype | |
| ) | |
| offset_cos = self._cos_cached[seqlen_offset:] | |
| offset_sin = self._sin_cached[seqlen_offset:] | |
| if kv is None: | |
| return _apply_rotary_emb_qkv(qkv, offset_cos, offset_sin) | |
| else: | |
| return _apply_rotary_emb(qkv, offset_cos, offset_sin), _apply_rotary_emb_kv( | |
| kv, offset_cos, offset_sin | |
| ) | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, | |
| config: PretrainedConfig, | |
| n_inner: Optional[int] = None, | |
| act_fn: Optional[str] = None, | |
| ) -> None: | |
| super().__init__() | |
| n_inner = n_inner or getattr(config, "n_inner", None) or 4 * config.n_embd | |
| act_fn = act_fn or config.activation_function | |
| self.fc1 = nn.Linear(config.n_embd, n_inner) | |
| self.fc2 = nn.Linear(n_inner, config.n_embd) | |
| self.act = ACT2FN[act_fn] | |
| def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
| return self.fc2(self.act(self.fc1(hidden_states))) | |
| # Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py) | |
| class SelfAttention(nn.Module): | |
| def __init__( | |
| self, | |
| causal: bool = True, | |
| softmax_scale: Optional[float] = None, | |
| attention_dropout: float = 0.0, | |
| ): | |
| super().__init__() | |
| self.causal = causal | |
| self.softmax_scale = softmax_scale | |
| self.drop = nn.Dropout(attention_dropout) | |
| def forward( | |
| self, | |
| qkv: torch.FloatTensor, | |
| causal: Optional[bool] = None, | |
| key_padding_mask: Optional[torch.BoolTensor] = None, | |
| ): | |
| q, k, v = qkv.chunk(3, dim=-1) | |
| scale = self.softmax_scale or 1.0 / q.size(-1) ** 0.5 | |
| scores = ( | |
| torch.einsum("bthd,bshd->bhts", q.to(torch.float32), k.to(torch.float32)) | |
| * scale | |
| ) | |
| if causal or self.causal: | |
| scores.triu_(1).fill_(-10000.0) | |
| if key_padding_mask is not None: | |
| scores.masked_fill_(key_padding_mask[:, None, None, :], -10000.0) | |
| attn = self.drop(torch.softmax(scores, dim=-1).to(v.dtype)) | |
| return torch.einsum("bhts,bshd->bthd", attn, v) | |
| # Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py) | |
| class CrossAttention(nn.Module): | |
| def __init__(self, causal=True, softmax_scale=None, attention_dropout=0.0): | |
| super().__init__() | |
| self.causal = causal | |
| self.softmax_scale = softmax_scale | |
| self.drop = nn.Dropout(attention_dropout) | |
| def forward( | |
| self, | |
| q: torch.FloatTensor, | |
| kv: torch.FloatTensor, | |
| causal: bool = None, | |
| key_padding_mask: Optional[torch.BoolTensor] = None, | |
| ) -> torch.FloatTensor: | |
| batch_size, seqlen_q = q.shape[0], q.shape[1] | |
| seqlen_k = kv.shape[1] | |
| if kv.shape[3] != q.shape[2]: | |
| kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3]) | |
| k, v = kv.unbind(dim=2) | |
| q = q.to(torch.float32) | |
| k = k.to(torch.float32) | |
| causal = self.causal if causal is None else causal | |
| softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) | |
| # Autocast is manually disabled to avoid `torch.einsum` performing the operation using float16, which might lead to overflow | |
| scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) | |
| if key_padding_mask is not None: | |
| padding_mask = torch.full( | |
| (batch_size, seqlen_k), | |
| -10000.0, | |
| dtype=scores.dtype, | |
| device=scores.device, | |
| ) | |
| padding_mask.masked_fill_(key_padding_mask, 0.0) | |
| scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") | |
| if causal: | |
| rows = rearrange( | |
| torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1" | |
| ) | |
| cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long) | |
| causal_mask = cols > rows + seqlen_k - seqlen_q | |
| scores = scores.masked_fill(causal_mask, -10000.0) | |
| attention = torch.softmax(scores, dim=-1).to(v.dtype) | |
| attention = self.drop(attention) | |
| output = torch.einsum("bhts,bshd->bthd", attention, v) | |
| return output | |
| def _find_mha_dims( | |
| config: PretrainedConfig, | |
| n_head: Optional[int] = None, | |
| n_head_kv: Optional[int] = None, | |
| head_dim: Optional[int] = None, | |
| ) -> Tuple[int, int]: | |
| if n_head is None and head_dim is None: | |
| head_dim = config.n_embd // config.n_head | |
| n_head = config.n_head | |
| elif n_head is None or head_dim is None: | |
| raise ValueError("`n_head` and `head_dim` must be both specified or `None`.") | |
| if n_head_kv is None: | |
| n_head_kv = getattr(config, "n_head_kv", None) or n_head | |
| return n_head, n_head_kv, head_dim | |
| def _update_kv_cache( | |
| kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int | |
| ) -> torch.FloatTensor: | |
| num_heads, head_dim = kv.shape[-2:] | |
| layer_memory = inference_params.key_value_memory_dict.setdefault( | |
| layer_idx, | |
| torch.empty( | |
| inference_params.max_batch_size, | |
| inference_params.max_seqlen, | |
| 2, | |
| num_heads, | |
| head_dim, | |
| dtype=kv.dtype, | |
| device=kv.device, | |
| ), | |
| ) | |
| batch_slice = slice( | |
| inference_params.batch_size_offset, | |
| inference_params.batch_size_offset + kv.shape[0], | |
| ) | |
| seqlen_slice = slice( | |
| inference_params.seqlen_offset, inference_params.seqlen_offset + kv.shape[1] | |
| ) | |
| if seqlen_slice.stop >= inference_params.max_seqlen: | |
| layer_memory = torch.cat((layer_memory, kv), dim=1) | |
| inference_params.key_value_memory_dict[layer_idx] = layer_memory | |
| layer_memory[batch_slice, seqlen_slice, ...] = kv | |
| return layer_memory[batch_slice, : seqlen_slice.stop, ...] | |
| # Multi-head attention layer with rotary embeddings | |
| class MHA(nn.Module): | |
| def __init__( | |
| self, | |
| config, | |
| dtype=None, | |
| device=None, | |
| rotary_dim=None, | |
| rotary_base=10000.0, | |
| rotary_scale_base=None, | |
| n_head=None, | |
| n_head_kv=None, | |
| head_dim=None, | |
| bias=True, | |
| causal=True, | |
| softmax_scale=None, | |
| layer_idx=None, | |
| return_residual=False, | |
| checkpointing=False, | |
| ): | |
| super().__init__() | |
| # Set rotary embedding if specified | |
| self.rotary_dim = rotary_dim or getattr(config, "rotary_dim", 0) | |
| if self.rotary_dim: | |
| self.rotary_emb = RotaryEmbedding( | |
| self.rotary_dim, | |
| base=rotary_base, | |
| scale_base=rotary_scale_base, | |
| device=device, | |
| max_position_embeddings=config.n_positions, | |
| ) | |
| # Determine MHA dims from arguments or config | |
| self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims( | |
| config, n_head, n_head_kv, head_dim | |
| ) | |
| op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv) | |
| hidden_size = config.n_embd | |
| # Choose Linear class based on config, FusedDense is optional | |
| LinearClass = ( | |
| FusedDense if config.fused_dense and FusedDense is not None else nn.Linear | |
| ) | |
| self.Wqkv = LinearClass( | |
| hidden_size, op_size, bias=bias, device=device, dtype=dtype | |
| ) | |
| self.out_proj = LinearClass( | |
| hidden_size, hidden_size, bias=bias, device=device, dtype=dtype | |
| ) | |
| # Initialize attention mechanisms | |
| attn_kwargs = { | |
| "causal": causal, | |
| "softmax_scale": softmax_scale, | |
| "attention_dropout": config.attn_pdrop, | |
| } | |
| self.inner_attn = SelfAttention(**attn_kwargs) | |
| self.inner_cross_attn = CrossAttention(**attn_kwargs) | |
| self.layer_idx = layer_idx | |
| self.return_residual = return_residual | |
| self.checkpointing = checkpointing | |
| def _forward_self_attn( | |
| self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor] | |
| ) -> torch.FloatTensor: | |
| qkv = rearrange( | |
| self.Wqkv(x), "... (three h d) -> ... three h d", three=3, d=self.head_dim | |
| ) | |
| if self.rotary_dim > 0: | |
| qkv = self.rotary_emb(qkv) | |
| attn_func = ( | |
| torch.utils.checkpoint.checkpoint | |
| if self.checkpointing | |
| else lambda f, *args, **kwargs: f(*args, **kwargs) | |
| ) | |
| return attn_func(self.inner_attn, qkv, key_padding_mask=key_padding_mask) | |
| def _forward_cross_attn( | |
| self, | |
| x: torch.FloatTensor, | |
| past_key_values: Optional[InferenceParams], | |
| key_padding_mask: Optional[torch.BoolTensor], | |
| ) -> torch.FloatTensor: | |
| qkv = self.Wqkv(x) | |
| q, kv = ( | |
| qkv[..., : self.n_head * self.head_dim], | |
| qkv[..., self.n_head * self.head_dim :], | |
| ) | |
| q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) | |
| kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) | |
| seqlen_offset = ( | |
| past_key_values.seqlen_offset if past_key_values is not None else 0 | |
| ) | |
| causal = None if seqlen_offset == 0 else False | |
| if self.rotary_dim > 0: | |
| q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset) | |
| if past_key_values is not None: | |
| kv = _update_kv_cache(kv, past_key_values, self.layer_idx) | |
| attn_func = ( | |
| torch.utils.checkpoint.checkpoint | |
| if self.checkpointing | |
| else lambda fn, *args, **kwargs: fn(*args, **kwargs) | |
| ) | |
| return attn_func( | |
| self.inner_cross_attn, | |
| q, | |
| kv, | |
| key_padding_mask=key_padding_mask, | |
| causal=causal, | |
| ) | |
| def forward( | |
| self, | |
| x: torch.FloatTensor, | |
| past_key_values: Optional[InferenceParams] = None, | |
| attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, | |
| ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
| attention_mask = attention_mask.bool() if attention_mask is not None else None | |
| use_cross_attn = self.n_head != self.n_head_kv or past_key_values is not None | |
| attn_output_function = ( | |
| self._forward_cross_attn if use_cross_attn else self._forward_self_attn | |
| ) | |
| attn_output = ( | |
| attn_output_function(x, past_key_values, attention_mask) | |
| if use_cross_attn | |
| else attn_output_function(x, attention_mask) | |
| ) | |
| output = self.out_proj(rearrange(attn_output, "... h d -> ... (h d)")) | |
| return (output, x) if self.return_residual else output | |
| # Parallel block. This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen). | |
| class ParallelBlock(nn.Module): | |
| def __init__(self, config: PretrainedConfig, block_idx: Optional[int] = None): | |
| super().__init__() | |
| self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
| self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
| self.block_idx = block_idx | |
| self.mixer = MHA(config, layer_idx=block_idx) | |
| self.mlp = MLP(config) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
| attention_mask: Optional[torch.BoolTensor] = None, | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| hidden_states = self.ln(hidden_states) | |
| attn_outputs = self.mixer( | |
| hidden_states, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| ) | |
| if isinstance(attn_outputs, tuple): | |
| attn_outputs = attn_outputs[0] | |
| attn_outputs = self.resid_dropout(attn_outputs) | |
| feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) | |
| return attn_outputs + feed_forward_hidden_states + residual | |
| class CausalLMHead(nn.Module): | |
| """Causal Language Modeling head. Simplified version.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
| self.linear = nn.Linear(config.n_embd, config.vocab_size) | |
| def forward(self, hidden_states): | |
| return self.linear(self.ln(hidden_states)).to(torch.float32) | |
| # Improving Language Understanding by Generative Pre-Training | |
| # (https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf) | |
| class CausalLMLoss(nn.Module): | |
| def __init__(self, shift_labels: bool = True) -> None: | |
| super().__init__() | |
| self.shift_labels = shift_labels | |
| self.loss_fct = nn.CrossEntropyLoss() | |
| def forward( | |
| self, logits: torch.FloatTensor, labels: torch.LongTensor | |
| ) -> torch.FloatTensor: | |
| if self.shift_labels: | |
| logits, labels = logits[..., :-1, :], labels[..., 1:] | |
| return self.loss_fct(logits.reshape(-1, logits.size(-1)), labels.reshape(-1)) | |
| class PhiPreTrainedModel(PreTrainedModel): | |
| config_class = PhiConfig | |
| base_model_prefix = "transformer" | |
| supports_gradient_checkpointing = False | |
| _no_split_modules = ["ParallelBlock"] | |
| def __init__(self, *inputs, **kwargs) -> None: | |
| super().__init__(*inputs, **kwargs) | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| inputs_embeds: torch.FloatTensor = None, | |
| past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
| attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, | |
| **kwargs, | |
| ) -> Dict[str, Any]: | |
| if input_ids is None and inputs_embeds is None: | |
| raise ValueError( | |
| "You have to specify either `input_ids` or `inputs_embeds`." | |
| ) | |
| max_batch_size = ( | |
| inputs_embeds.shape[0] if inputs_embeds is not None else input_ids.shape[0] | |
| ) | |
| seqlen_offset = ( | |
| inputs_embeds.shape[1] + input_ids.shape[1] - 2 | |
| if inputs_embeds is not None | |
| else input_ids.shape[1] - 1 | |
| ) | |
| args = ( | |
| {"inputs_embeds": inputs_embeds} | |
| if inputs_embeds is not None | |
| else {"input_ids": input_ids} | |
| ) | |
| if not isinstance(past_key_values, InferenceParams): | |
| past_key_values = InferenceParams( | |
| max_seqlen=self.config.n_positions, | |
| max_batch_size=max_batch_size, | |
| seqlen_offset=0, | |
| batch_size_offset=0, | |
| key_value_memory_dict={}, | |
| lengths_per_sample=None, | |
| ) | |
| else: | |
| past_key_values.seqlen_offset = seqlen_offset | |
| args = {"input_ids": input_ids[:, -1].unsqueeze(-1)} | |
| return { | |
| **args, | |
| "past_key_values": past_key_values, | |
| "attention_mask": attention_mask, | |
| } | |
| class PhiModel(PhiPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [""] | |
| _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] | |
| def __init__(self, config: PhiConfig) -> None: | |
| super().__init__(config) | |
| self.embd = Embedding(config) | |
| self.h = nn.ModuleList( | |
| [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)] | |
| ) | |
| self.gradient_checkpointing = config.gradient_checkpointing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Embedding: | |
| return self.embd.wte | |
| def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: | |
| self.embd.wte = new_embeddings | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| inputs_embeds: torch.FloatTensor = None, | |
| past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
| attention_mask: Optional[torch.BoolTensor] = None, | |
| ) -> torch.FloatTensor: | |
| if (input_ids is None) == (inputs_embeds is None): | |
| raise ValueError("Specify exactly one of `input_ids` or `inputs_embeds`.") | |
| hidden_states = self.embd(input_ids) if input_ids is not None else inputs_embeds | |
| for layer in self.h: | |
| func = layer.__call__ if self.gradient_checkpointing else layer | |
| args = (hidden_states, past_key_values, attention_mask) | |
| hidden_states = ( | |
| torch.utils.checkpoint.checkpoint(func, *args, use_reentrant=True) | |
| if self.gradient_checkpointing | |
| else func(*args) | |
| ) | |
| return hidden_states | |
| class PhiForCausalLM(PhiPreTrainedModel): | |
| _keys_to_ignore_on_load_missing, _keys_to_ignore_on_load_unexpected = ( | |
| [""], | |
| [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"], | |
| ) | |
| def __init__(self, config: PhiConfig) -> None: | |
| super().__init__(config) | |
| self.transformer = PhiModel(config) | |
| self.lm_head = CausalLMHead(config) | |
| self.loss = CausalLMLoss() | |
| self.post_init() | |
| def get_output_embeddings(self) -> nn.Linear: | |
| return self.lm_head.linear | |
| def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: | |
| self.lm_head.linear = new_embeddings | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| inputs_embeds: torch.FloatTensor = None, | |
| past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
| attention_mask: Optional[torch.BoolTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| **kwargs, | |
| ) -> CausalLMOutputWithPast: | |
| hidden_states = self.transformer( | |
| input_ids=input_ids, | |
| inputs_embeds=inputs_embeds, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| ) | |
| lm_logits = self.lm_head(hidden_states) | |
| loss = self.loss(lm_logits, labels) if labels is not None else None | |
| return CausalLMOutputWithPast( | |
| loss=loss, logits=lm_logits, past_key_values=past_key_values | |
| ) | |