File size: 5,535 Bytes
0140c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import subprocess
import concurrent.futures

from PIL import Image
from tqdm import tqdm
from PIL import Image, ExifTags

target_resolutions = [
    (640, 1632),   # 640 * 1632 = 1044480
    (704, 1472),   # 704 * 1472 = 1036288
    (768, 1360),   # 768 * 1360 = 1044480
    (832, 1248),   # 832 * 1248 = 1038336
    (896, 1152),
    (960, 1088),   # 960 * 1088 = 1044480
    (992, 1056),   # 992 * 1056 = 1047552
    (1024, 1024),  # 1024 * 1024 = 1048576
    (1056, 992),   # 1056 * 992 = 1047552
    (1088, 960),   # 1088 * 960 = 1044480
    (1152, 896),
    (1248, 832),   # 1248 * 832 = 1038336
    (1360, 768),   # 1360 * 768 = 1044480
    (1472, 704),   # 1472 * 704 = 1036288
    (1632, 640),   # 1632 * 640 = 1044480
    # (768, 1360),   # 768 * 1360 = 1044480
    # (1472, 704),   # 1472 * 704 = 1036288
    # (1024, 1024),  # 1024 * 1024 = 1048576
]

# 图像预处理
def apply_exif_orientation(image):
    try:
        for orientation in ExifTags.TAGS.keys():
            if ExifTags.TAGS[orientation] == 'Orientation':
                break
        exif = image._getexif()

        if exif is not None:
            exif = dict(exif.items())
            orientation_value = exif.get(orientation)

            if orientation_value == 3:
                image = image.rotate(180, expand=True)
            elif orientation_value == 6:
                image = image.rotate(270, expand=True)
            elif orientation_value == 8:
                image = image.rotate(90, expand=True)
    except (AttributeError, KeyError, IndexError, TypeError):
        # cases: image don't have getexif
        pass

    return image

def convert_image_to_jpg(img, img_path):
    """Convert an Image object to JPG."""
    # Remove extension from original filename and add .jpg
    base_name = os.path.splitext(img_path)[0]
    jpg_path = base_name + '.jpg'
    
    # Convert image to RGB if it is RGBA (or any other mode)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    
    img.save(jpg_path, format='JPEG', quality=100)

def process_image(img_path):
    try:
        if img_path.lower().endswith((".jpg", ".png", ".bmp", ".gif", ".tif", ".tiff", ".jpeg", ".webp")):
            img = Image.open(img_path)
            img = apply_exif_orientation(img)  # Apply the EXIF orientation

            # Convert to 'RGB' if it is 'RGBA' or any other mode
            img = img.convert('RGB')

            # 计算原图像的宽高比
            original_aspect_ratio = img.width / img.height

            # 找到最接近原图像宽高比的目标分辨率
            target_resolution = min(target_resolutions, key=lambda res: abs(original_aspect_ratio - res[0] / res[1]))

            # 计算新的维度
            if img.width / target_resolution[0] < img.height / target_resolution[1]:
                new_width = target_resolution[0]
                new_height = int(img.height * target_resolution[0] / img.width)
            else:
                new_height = target_resolution[1]
                new_width = int(img.width * target_resolution[1] / img.height)

            # 等比缩放图像
            img = img.resize((new_width, new_height), Image.LANCZOS)

            # 计算裁剪的区域
            left = int((img.width - target_resolution[0]) / 2)
            top = int((img.height - target_resolution[1]) / 2)
            right = int((img.width + target_resolution[0]) / 2)
            bottom = int((img.height + target_resolution[1]) / 2)

            # 裁剪图像
            img = img.crop((left, top, right, bottom))

            # 转换并保存图像为JPG格式
            convert_image_to_jpg(img, img_path)

    except Exception as e:
        print(f"Error processing image {img_path}: {e}")
        return None

def delete_non_jpg_files(folder_path):
    """Delete all non-jpg image files in a directory, but keep txt files."""
    for dirpath, dirnames, filenames in os.walk(folder_path):
        for filename in filenames:
            if not filename.lower().endswith((".jpg", ".txt")):
                file_path = os.path.join(dirpath, filename)
                try:
                    os.remove(file_path)
                except Exception as e:
                    print(f"Error occurred while deleting file : {file_path}. Error : {str(e)}")

def process_images_in_folder(folder_path):
    """

    Process all images in the given folder according to the target resolutions,

    then delete all non-jpg files except for .txt files.

    """
    processed_files = []

    file_list = [os.path.join(dirpath, filename)
                 for dirpath, dirnames, filenames in os.walk(folder_path)
                 for filename in filenames]

    with concurrent.futures.ThreadPoolExecutor() as executor:
        list(tqdm(executor.map(process_image, file_list), total=len(file_list)))

    delete_non_jpg_files(folder_path)
    return f"Processed images in folder: {folder_path}"

# 失败检查
def run_script(folder_path, keywords):
    keywords = keywords if keywords else "sorry,error"
    result = subprocess.run(
        [
            'python', './lib/Failed_Tagging_File_Screening.py',
            '--image_path', folder_path,
            '--keywords', keywords
        ],
        capture_output=True, text=True
    )
    return result.stdout if result.stdout else "No Output", result.stderr if result.stderr else "No Error"