Spaces:
Runtime error
Runtime error
File size: 13,269 Bytes
0140c70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import io
import os
import time
import json
import base64
import requests
import subprocess
import platform
from PIL import Image
from requests.adapters import HTTPAdapter
import re
from urllib3.util.retry import Retry
from huggingface_hub import snapshot_download
API_PATH = 'api_settings.json'
QWEN_MOD = 'qwen-vl-plus'
DEFAULT_GPT_MODEL = 'gpt-4o'
DEFAULT_CLAUDE_MODEL = 'claude-3-sonnet'
# 扩展prompt {} 标记功能,从文件读取额外内容
def addition_prompt_process(prompt, image_path):
# 从image_path分离文件名和扩展名,并更改扩展名为.txt
if '{' not in prompt and '}' not in prompt:
return prompt
file_root, _ = os.path.splitext(image_path)
new_file_name = os.path.basename(file_root) + ".txt"
# 从prompt中提取目录路径
directory_path = prompt[prompt.find('{') + 1: prompt.find('}')]
# 拼接新的文件路径
full_path = os.path.join(directory_path, new_file_name)
# 读取full_path指定的文件内容
try:
with open(full_path, 'r') as file:
file_content = file.read()
except Exception as e:
return f"Error reading file: {e}"
new_prompt = prompt.replace('{' + directory_path + '}', file_content)
return new_prompt
# 通义千问VL
def is_ali(api_url):
if api_url.endswith("/v1/services/aigc/multimodal-generation/generation"):
return True
else:
return False
def is_claude(api_url, model):
if api_url.endswith("v1/messages") or "claude" in model.lower():
return True
else:
return False
def qwen_api_switch(mod):
global QWEN_MOD
QWEN_MOD = mod
return QWEN_MOD
def qwen_api(image_path, prompt, api_key):
print(f"QWEN_MOD: {QWEN_MOD}")
os.environ['DASHSCOPE_API_KEY'] = api_key
from dashscope import MultiModalConversation
img = f"file://{image_path}"
messages = [{
'role': 'system',
'content': [
{'text': 'You are a helpful assistant.'}
]
}, {
'role':'user',
'content': [
{'image': img},
{'text': prompt},
]
}]
response = MultiModalConversation.call(model=QWEN_MOD, messages=messages, stream=False, max_length=300)
if '"status_code": 400' in response:
return f"API error: {response}"
if response.get("output") and response["output"].get("choices") and response["output"]["choices"][0].get("message") and response["output"]["choices"][0]["message"].get("content"):
if response["output"]["choices"][0]["message"]["content"][0].get("text", False):
caption = response["output"]["choices"][0]["message"]["content"][0]["text"]
else:
box_value = response["output"]["choices"][0]["message"]["content"][0]["box"]
text_value = response["output"]["choices"][0]["message"]["content"][1]["text"]
b_value = re.search(r'<ref>(.*?)</ref>', box_value).group(1)
caption = b_value + text_value
else:
caption = response
return caption
def claude_api(image_path, prompt, api_key, api_url, model, quality=None):
print(f"CLAUDE_MODEL: {model}")
with open(image_path, "rb") as image_file:
# Downscale the image
image = Image.open(image_file)
width, height = image.size
if quality:
if quality == "high":
target = 1024
elif quality == "low":
target = 512
elif quality == "auto":
if width >= 1024 or height >= 1024:
target = 1024
else:
target = 512
else:
target = 1024
aspect_ratio = width / height
# Determine the new dimensions while maintaining the aspect ratio
if width > target or height > target:
if width > height:
new_width = target
new_height = int(new_width / aspect_ratio)
else:
new_height = target
new_width = int(new_height * aspect_ratio)
else:
new_width, new_height = width, height
# Resize the image
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Use buffer to store image
buffer = io.BytesIO()
resized_image.save(buffer, format="JPEG")
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
# Claude API
data = {
"model": model,
"max_tokens": 300,
"messages": [
{"role": "user", "content": [
{"type": "image", "source": {
"type": "base64",
"media_type": "image/jpeg",
"data": image_base64
}
},
{"type": "text", "text": prompt}
]
}
]
}
# print(f"data: {data}\n")
headers = {
"Content-Type": "application/json",
"x-api-key:": api_key,
"anthropic-version": "2023-06-01"
}
# 配置重试策略
retries = Retry(total=5,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "OPTIONS", "POST"]) # 更新参数名
with requests.Session() as s:
s.mount('https://', HTTPAdapter(max_retries=retries))
try:
response = s.post(api_url, headers=headers, json=data)
response.raise_for_status()
# 连接错误回显
except requests.exceptions.HTTPError as errh:
return f"HTTP Error: {errh}"
except requests.exceptions.ConnectionError as errc:
return f"Error Connecting: {errc}"
except requests.exceptions.Timeout as errt:
return f"Timeout Error: {errt}"
except requests.exceptions.RequestException as err:
return f"OOps: Something Else: {err}"
try:
response_data = response.json()
if 'error' in response_data:
return f"API error: {response_data['error']['message']}"
caption = response_data['content'][0]['text']
return caption
except Exception as e:
return f"Failed to parse the API response: {e}\n{response.text}"
# API使用
def run_openai_api(image_path, prompt, api_key, api_url, quality=None, timeout=10, model=DEFAULT_GPT_MODEL):
prompt = addition_prompt_process(prompt, image_path)
# print("prompt{}:",prompt)
# Qwen-VL
if is_ali(api_url):
return qwen_api(image_path, prompt, api_key)
if is_claude(api_url, model):
return claude_api(image_path, prompt, api_key, api_url, model, quality)
with open(image_path, "rb") as image_file:
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
# GPT-4V
data = {
"model": model,
"messages": [
{
"role": "user",
"content":
[
{"type": "image_url", "image_url":
{"url": f"data:image/jpeg;base64,{image_base64}",
"detail": f"{quality}"}
},
{"type": "text", "text": prompt}
]
}
],
"max_tokens": 300
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
# 配置重试策略
retries = Retry(total=5,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "OPTIONS", "POST"]) # 更新参数名
with requests.Session() as s:
s.mount('https://', HTTPAdapter(max_retries=retries))
try:
response = s.post(api_url, headers=headers, json=data, timeout=timeout)
response.raise_for_status()
# 连接错误回显
except requests.exceptions.HTTPError as errh:
return f"HTTP Error: {errh}"
except requests.exceptions.ConnectionError as errc:
return f"Error Connecting: {errc}"
except requests.exceptions.Timeout as errt:
return f"Timeout Error: {errt}"
except requests.exceptions.RequestException as err:
return f"OOps: Something Else: {err}"
try:
response_data = response.json()
if 'error' in response_data:
return f"API error: {response_data['error']['message']}"
caption = response_data["choices"][0]["message"]["content"]
return caption
except Exception as e:
return f"Failed to parse the API response: {e}\n{response.text}"
# API存档
def save_api_details(api_key, api_url):
if is_ali(api_url):
settings = {
'model' : QWEN_MOD,
'api_key': api_key,
'api_url': api_url
}
else:
settings = {
'model' : 'GPT',
'api_key': api_key,
'api_url': api_url
}
# 不记录空的apikey
if api_key != "":
with open(API_PATH, 'w', encoding='utf-8') as f:
json.dump(settings, f)
def save_state(llm, key, url):
if llm[:3] == "GPT" or llm[:4] == "qwen":
settings = {
'model': llm,
'api_key': key,
'api_url': url
}
elif llm[:3] == "Cog" or llm[:4] == "moon" or llm[:7] == "MiniCPM":
settings = {
'model' : llm,
'api_key': "",
'api_url': "http://127.0.0.1:8000/v1/chat/completions"
}
output = f"Set {llm} as default. / {llm}已设为默认"
with open(API_PATH, 'w', encoding='utf-8') as f:
json.dump(settings, f)
return output
# 读取API设置
def get_api_details():
settings_file = API_PATH
if os.path.exists(settings_file):
with open(settings_file, 'r') as f:
settings = json.load(f)
if settings.get('model', '') != '':
mod = settings.get('model', '')
url = settings.get('api_url', '')
if mod[:4] == "qwen":
global QWEN_MOD
QWEN_MOD = mod
else:
if is_ali(url):
mod = QWEN_MOD
return mod, settings.get('api_key', ''), url
else:
if settings.get('api_key', '') != '':
i_key = settings.get('api_key', '')
i_url = settings.get('api_url', '')
save_api_details(i_key,i_url)
with open(settings_file, 'r') as i:
settings = json.load(i)
return settings.get('model', ''), settings.get('api_key', ''), settings.get('api_url', '')
return 'GPT', '', ''
# 本地模型相关
def downloader(model_type, acceleration):
endpoint = 'https://hf-mirror.com' if acceleration == 'CN' else None
if model_type == 'vqa' or model_type == 'chat':
snapshot_download(
repo_id="lmsys/vicuna-7b-v1.5",
allow_patterns=["tokenizer*","special_tokens_map.json"],
endpoint=endpoint
)
if model_type == 'vqa':
snapshot_download(
repo_id="THUDM/cogagent-vqa-hf",
local_dir="./models/cogagent-vqa-hf",
max_workers=8,
endpoint=endpoint
)
elif model_type == 'chat':
snapshot_download(
repo_id="THUDM/cogagent-chat-hf",
local_dir="./models/cogagent-chat-hf",
max_workers=8,
endpoint=endpoint
)
elif model_type == 'moondream':
snapshot_download(
repo_id="vikhyatk/moondream1",
local_dir="./models/moondream",
max_workers=8,
endpoint=endpoint
)
elif model_type == 'minicpm':
snapshot_download(
repo_id="openbmb/MiniCPM-Llama3-V-2_5",
local_dir="./models/MiniCPM-Llama3-V-2_5",
max_workers=8,
endpoint=endpoint
)
return f"{model_type} Model download completed. / {model_type}模型下载完成"
def installer():
if platform.system() == "Windows":
install_command = f'.\install_script\installcog.bat'
else:
install_command = f'./install_script/installcog.sh'
subprocess.Popen(f'chmod +x {install_command}', shell=True)
subprocess.Popen('', shell=True) #Use an empty subprocess to refresh permission. If deleted, installcog.sh wouldn't launch properly, with Permission denied error
subprocess.Popen(install_command, shell=True)
while not os.path.exists('install_temp.txt'):
time.sleep(2)
with open('install_temp.txt', 'r') as file:
result_string = file.read()
os.remove('install_temp.txt')
return result_string
|