Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from sklearn.metrics.pairwise import cosine_similarity
|
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import torch
|
10 |
from torch.utils.data import DataLoader, Dataset
|
11 |
-
from datasets import load_dataset
|
12 |
from datetime import datetime
|
13 |
from typing import List, Dict, Any
|
14 |
from functools import partial
|
@@ -24,20 +24,36 @@ if 'feedback' not in st.session_state:
|
|
24 |
st.session_state.feedback = {}
|
25 |
|
26 |
# Define subset size and batch size for optimization
|
27 |
-
SUBSET_SIZE = 500 #
|
28 |
BATCH_SIZE = 8 # Smaller batch size to reduce memory overhead
|
29 |
|
30 |
-
# Caching key resources: Model, Tokenizer, and Precomputed Embeddings
|
31 |
@st.cache_resource
|
32 |
-
def
|
33 |
"""
|
34 |
-
Load the pre-trained model and tokenizer using Hugging Face Transformers
|
35 |
-
|
36 |
"""
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
return tokenizer, model
|
42 |
|
43 |
@st.cache_resource
|
@@ -56,7 +72,6 @@ def load_data():
|
|
56 |
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
|
57 |
return data
|
58 |
|
59 |
-
|
60 |
@st.cache_resource
|
61 |
def precompute_embeddings(data: pd.DataFrame, _tokenizer, _model, batch_size=BATCH_SIZE):
|
62 |
"""
|
@@ -113,10 +128,13 @@ def precompute_embeddings(data: pd.DataFrame, _tokenizer, _model, batch_size=BAT
|
|
113 |
)
|
114 |
|
115 |
embeddings = []
|
116 |
-
for
|
|
|
117 |
batch_embeddings = generate_embeddings_batch(_model, batch, device)
|
118 |
embeddings.extend(batch_embeddings)
|
|
|
119 |
|
|
|
120 |
data['embedding'] = embeddings
|
121 |
return data
|
122 |
|
@@ -136,8 +154,18 @@ def find_similar_repos(query_embedding: np.ndarray, data: pd.DataFrame, top_n=5)
|
|
136 |
"""
|
137 |
Compute cosine similarity and return the top N most similar repositories.
|
138 |
"""
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
data['similarity'] = similarities
|
|
|
141 |
return data.nlargest(top_n, 'similarity')
|
142 |
|
143 |
def display_recommendations(recommendations: pd.DataFrame):
|
@@ -154,8 +182,10 @@ def display_recommendations(recommendations: pd.DataFrame):
|
|
154 |
st.title("Repository Recommender System 🚀")
|
155 |
st.caption("Find repositories based on your project description.")
|
156 |
|
157 |
-
# Load resources
|
158 |
-
tokenizer, model =
|
|
|
|
|
159 |
data = load_data()
|
160 |
data = precompute_embeddings(data, tokenizer, model)
|
161 |
|
|
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import torch
|
10 |
from torch.utils.data import DataLoader, Dataset
|
11 |
+
from datasets import load_dataset
|
12 |
from datetime import datetime
|
13 |
from typing import List, Dict, Any
|
14 |
from functools import partial
|
|
|
24 |
st.session_state.feedback = {}
|
25 |
|
26 |
# Define subset size and batch size for optimization
|
27 |
+
SUBSET_SIZE = 500 # Subset for faster precomputation
|
28 |
BATCH_SIZE = 8 # Smaller batch size to reduce memory overhead
|
29 |
|
|
|
30 |
@st.cache_resource
|
31 |
+
def load_model_and_tokenizer_with_progress():
|
32 |
"""
|
33 |
+
Load the pre-trained model and tokenizer using Hugging Face Transformers
|
34 |
+
with a progress bar for better user experience.
|
35 |
"""
|
36 |
+
progress_bar = st.progress(0)
|
37 |
+
status_text = st.empty()
|
38 |
+
|
39 |
+
try:
|
40 |
+
progress_bar.progress(10)
|
41 |
+
status_text.text("Loading tokenizer...")
|
42 |
+
model_name = "Salesforce/codet5-small"
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
+
|
45 |
+
progress_bar.progress(50)
|
46 |
+
status_text.text("Loading model...")
|
47 |
+
model = AutoModel.from_pretrained(model_name).to(device)
|
48 |
+
model.eval()
|
49 |
+
|
50 |
+
progress_bar.progress(100)
|
51 |
+
status_text.text("Model loaded successfully!")
|
52 |
+
|
53 |
+
finally:
|
54 |
+
progress_bar.empty()
|
55 |
+
status_text.empty()
|
56 |
+
|
57 |
return tokenizer, model
|
58 |
|
59 |
@st.cache_resource
|
|
|
72 |
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
|
73 |
return data
|
74 |
|
|
|
75 |
@st.cache_resource
|
76 |
def precompute_embeddings(data: pd.DataFrame, _tokenizer, _model, batch_size=BATCH_SIZE):
|
77 |
"""
|
|
|
128 |
)
|
129 |
|
130 |
embeddings = []
|
131 |
+
progress_bar = st.progress(0) # Progress bar for embedding computation
|
132 |
+
for i, batch in enumerate(dataloader):
|
133 |
batch_embeddings = generate_embeddings_batch(_model, batch, device)
|
134 |
embeddings.extend(batch_embeddings)
|
135 |
+
progress_bar.progress((i + 1) / len(dataloader))
|
136 |
|
137 |
+
progress_bar.empty()
|
138 |
data['embedding'] = embeddings
|
139 |
return data
|
140 |
|
|
|
154 |
"""
|
155 |
Compute cosine similarity and return the top N most similar repositories.
|
156 |
"""
|
157 |
+
# Reshape query_embedding to 2D
|
158 |
+
query_embedding = query_embedding.reshape(1, -1)
|
159 |
+
|
160 |
+
# Convert data['embedding'] to a 2D array
|
161 |
+
embeddings = np.vstack(data['embedding'].values)
|
162 |
+
|
163 |
+
# Compute cosine similarity
|
164 |
+
similarities = cosine_similarity(query_embedding, embeddings)[0]
|
165 |
+
|
166 |
+
# Add similarity scores to the DataFrame
|
167 |
data['similarity'] = similarities
|
168 |
+
|
169 |
return data.nlargest(top_n, 'similarity')
|
170 |
|
171 |
def display_recommendations(recommendations: pd.DataFrame):
|
|
|
182 |
st.title("Repository Recommender System 🚀")
|
183 |
st.caption("Find repositories based on your project description.")
|
184 |
|
185 |
+
# Load resources with progress bar
|
186 |
+
tokenizer, model = load_model_and_tokenizer_with_progress()
|
187 |
+
|
188 |
+
# Load data and precompute embeddings
|
189 |
data = load_data()
|
190 |
data = precompute_embeddings(data, tokenizer, model)
|
191 |
|