frankjosh's picture
Upload app.py
c26ed9b verified
raw
history blame
7.81 kB
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1deINvEblsMkv9h0gJzuGB4uSamW0DMX5
"""
pip install streamlit transformers gdown torch pandas numpy
import warnings
warnings.filterwarnings('ignore')
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
import gdown
from pathlib import Path
from datetime import datetime
import json
import torch.cuda
# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize session state
if 'history' not in st.session_state:
st.session_state.history = []
if 'feedback' not in st.session_state:
st.session_state.feedback = {}
# Step 1: Optimized Model Loading
@st.cache_resource
def load_model_and_tokenizer():
"""
Optimized model loading with GPU support and model quantization
"""
model_name = "Salesforce/codet5-small"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load model with optimizations
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True
)
# Move model to GPU if available
model = model.to(device)
# Set to evaluation mode
model.eval()
return tokenizer, model
# Step 2: Optimized Dataset Loading
@st.cache_resource
def load_data():
"""
Load and prepare dataset with progress tracking
"""
Path("data").mkdir(exist_ok=True)
dataset_path = "/content/drive/MyDrive/practice_ml/filtered_dataset.parquet"
if not Path(dataset_path).exists():
with st.spinner('Downloading dataset... This might take a few minutes...'):
url = "https://drive.google.com/drive/folders/1dphd3vDKV46GwWKW5uo-MBl0GWGyCWUs?usp=drive_link"
gdown.download(url, dataset_path, quiet=False)
data = pd.read_parquet(dataset_path)
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
return data
# Step 3: Optimized Embedding Generation
@st.cache_data
def generate_embedding(_model, tokenizer, text):
"""
Generate embeddings with optimized batch processing
"""
inputs = tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(device)
with torch.no_grad():
outputs = _model.encoder(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
def generate_case_study(repo_data):
"""
Generate a concise case study brief from repository data
"""
template = f"""
**Project Overview**: {repo_data['summary'][:50]}...
**Key Features**:
- Repository contains production-ready {repo_data['path'].split('/')[-1]} implementation
- {repo_data['docstring'][:50]}...
**Potential Applications**: This repository can be utilized for projects requiring {repo_data['summary'].split()[0:5]}...
**Implementation Complexity**: {'Medium' if len(repo_data['docstring']) > 500 else 'Low'}
**Integration Potential**: {'High' if 'api' in repo_data['text'].lower() or 'interface' in repo_data['text'].lower() else 'Medium'}
"""
return template[:150] + "..."
def save_feedback(repo_id, feedback_type):
"""
Save user feedback for a repository
"""
if repo_id not in st.session_state.feedback:
st.session_state.feedback[repo_id] = {'likes': 0, 'dislikes': 0}
st.session_state.feedback[repo_id][feedback_type] += 1
# Main App
st.title("Enhanced Repository Recommender System πŸš€")
# Sidebar for History and Stats
with st.sidebar:
st.header("πŸ“Š Search History")
if st.session_state.history:
for idx, item in enumerate(st.session_state.history[-5:]): # Show last 5 searches
with st.expander(f"Search {len(st.session_state.history)-idx}: {item['query'][:30]}..."):
st.write(f"Time: {item['timestamp']}")
st.write(f"Results: {len(item['results'])} repositories")
if st.button("Rerun this search", key=f"rerun_{idx}"):
st.session_state.rerun_query = item['query']
else:
st.write("No search history yet")
st.header("πŸ“ˆ Usage Statistics")
st.write(f"Total Searches: {len(st.session_state.history)}")
if st.session_state.feedback:
total_likes = sum(f['likes'] for f in st.session_state.feedback.values())
total_dislikes = sum(f['dislikes'] for f in st.session_state.feedback.values())
st.write(f"Total Likes: {total_likes}")
st.write(f"Total Dislikes: {total_dislikes}")
# Load resources
@st.cache_resource
def initialize_resources():
data = load_data()
tokenizer, model = load_model_and_tokenizer()
return data, tokenizer, model
data, tokenizer, model = initialize_resources()
# Main interface
user_query = st.text_area(
"Describe your project:",
height=150,
placeholder="Example: I need a machine learning project for customer churn prediction..."
)
# Search button and filters
col1, col2 = st.columns([2, 1])
with col1:
search_button = st.button("πŸ” Search Repositories", type="primary")
with col2:
top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)
if search_button and user_query:
with st.spinner("Finding relevant repositories..."):
# Generate query embedding and get recommendations
query_embedding = generate_embedding(model, tokenizer, user_query)
data['similarity'] = data['embedding'].apply(
lambda x: cosine_similarity([query_embedding], [x])[0][0]
)
recommendations = data.nlargest(top_n, 'similarity')
# Save to history
st.session_state.history.append({
'query': user_query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': recommendations['repo'].tolist()
})
# Display recommendations
st.markdown("### 🎯 Top Recommendations")
for idx, row in recommendations.iterrows():
with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
# Repository details
col1, col2 = st.columns([2, 1])
with col1:
st.markdown(f"**URL:** [View Repository]({row['url']})")
st.markdown(f"**Path:** `{row['path']}`")
with col2:
st.metric("Match Score", f"{row['similarity']:.2%}")
# Feedback buttons
feedback_col1, feedback_col2 = st.columns(2)
with feedback_col1:
if st.button("πŸ‘", key=f"like_{idx}"):
save_feedback(row['repo'], 'likes')
st.success("Thanks for your feedback!")
with feedback_col2:
if st.button("πŸ‘Ž", key=f"dislike_{idx}"):
save_feedback(row['repo'], 'dislikes')
st.success("Thanks for your feedback!")
# Case Study Tab
with st.expander("πŸ“‘ Case Study Brief"):
st.markdown(generate_case_study(row))
# Documentation Tab
if row['docstring']:
with st.expander("πŸ“š Documentation"):
st.markdown(row['docstring'])
# Footer
st.markdown("---")
st.markdown(
"""
Made with πŸ€– using CodeT5 and Streamlit |
GPU Status: {'🟒 Enabled' if torch.cuda.is_available() else 'πŸ”΄ Disabled'} |
Model: CodeT5-Small
"""
)