Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,439 +1,89 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""repository_recommender.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colab.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1qv09N8Vtcw5vr5NqCSfZonFeh1SQmVW5
|
8 |
-
"""
|
9 |
-
|
10 |
-
#!pip install pyarrow pandas numpy streamlit gdown torch transformers
|
11 |
-
|
12 |
-
import warnings
|
13 |
-
warnings.filterwarnings('ignore')
|
14 |
-
|
15 |
import streamlit as st
|
16 |
import pandas as pd
|
17 |
import numpy as np
|
18 |
from sklearn.metrics.pairwise import cosine_similarity
|
19 |
from transformers import AutoTokenizer, AutoModel
|
20 |
import torch
|
21 |
-
import
|
22 |
-
from
|
23 |
-
from datetime import datetime
|
24 |
-
import json
|
25 |
-
from huggingface import hf_hub_download
|
26 |
-
|
27 |
-
# Initialize session state for history and feedback
|
28 |
-
if 'search_history' not in st.session_state:
|
29 |
-
st.session_state.search_history = []
|
30 |
-
if 'feedback_data' not in st.session_state:
|
31 |
-
st.session_state.feedback_data = {}
|
32 |
-
|
33 |
-
# Model Loading Optimization
|
34 |
-
class ModelManager:
|
35 |
-
def __init__(self):
|
36 |
-
self.model = None
|
37 |
-
self.tokenizer = None
|
38 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
-
|
40 |
-
@st.cache_resource
|
41 |
-
def load_model_and_tokenizer(self):
|
42 |
-
"""Optimized model loading with device placement"""
|
43 |
-
model_name = "Salesforce/codet5-small"
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
-
model = AutoModel.from_pretrained(model_name).to(self.device)
|
46 |
-
model.eval() # Set model to evaluation mode
|
47 |
-
return tokenizer, model
|
48 |
-
|
49 |
-
def get_model_and_tokenizer(self):
|
50 |
-
if self.model is None or self.tokenizer is None:
|
51 |
-
self.tokenizer, self.model = self.load_model_and_tokenizer()
|
52 |
-
return self.tokenizer, self.model
|
53 |
-
|
54 |
-
@torch.no_grad() # Disable gradient computation
|
55 |
-
def generate_embedding(self, text, max_length=512):
|
56 |
-
"""Optimized embedding generation"""
|
57 |
-
tokenizer, model = self.get_model_and_tokenizer()
|
58 |
-
inputs = tokenizer(
|
59 |
-
text,
|
60 |
-
return_tensors="pt",
|
61 |
-
padding=True,
|
62 |
-
truncation=True,
|
63 |
-
max_length=max_length
|
64 |
-
).to(self.device)
|
65 |
-
|
66 |
-
outputs = model.encoder(**inputs)
|
67 |
-
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
68 |
-
return embedding
|
69 |
-
|
70 |
-
# Data Management
|
71 |
-
class DataManager:
|
72 |
-
@st.cache_resource
|
73 |
-
def load_dataset():
|
74 |
-
"""Load and prepare dataset"""
|
75 |
-
|
76 |
-
Path("data").mkdir(exist_ok=True)
|
77 |
-
dataset_path = "https://drive.google.com/file/d/1KEJPaCtNB-uOFjcEOOvxhD2bxW-xzXtJ/view?usp=drive_link"
|
78 |
-
|
79 |
-
if not Path(dataset_path).exists():
|
80 |
-
with st.spinner('Downloading dataset... This might take a few minutes...'):
|
81 |
-
url = "https://drive.google.com/file/d/1KEJPaCtNB-uOFjcEOOvxhD2bxW-xzXtJ/view?usp=drive_link"
|
82 |
-
gdown.download(url, dataset_path, quiet=False)
|
83 |
-
|
84 |
-
data = pd.read_csv(dataset_path)
|
85 |
-
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
|
86 |
-
return data
|
87 |
-
|
88 |
-
@st.cache_data
|
89 |
-
def compute_embeddings(_data, _model_manager):
|
90 |
-
"""Compute embeddings in batches"""
|
91 |
-
embeddings = []
|
92 |
-
batch_size = 32
|
93 |
-
|
94 |
-
with st.progress(0) as progress_bar:
|
95 |
-
for i in range(0, len(_data), batch_size):
|
96 |
-
batch = _data['text'].iloc[i:i+batch_size]
|
97 |
-
batch_embeddings = [_model_manager.generate_embedding(text) for text in batch]
|
98 |
-
embeddings.extend(batch_embeddings)
|
99 |
-
progress_bar.progress(min((i + batch_size) / len(_data), 1.0))
|
100 |
-
|
101 |
-
return embeddings
|
102 |
-
|
103 |
-
# History and Feedback Management
|
104 |
-
def add_to_history(query, recommendations):
|
105 |
-
"""Add search to history"""
|
106 |
-
history_entry = {
|
107 |
-
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
|
108 |
-
'query': query,
|
109 |
-
'recommendations': recommendations[['repo', 'path', 'url', 'similarity']].to_dict('records')
|
110 |
-
}
|
111 |
-
st.session_state.search_history.insert(0, history_entry)
|
112 |
-
|
113 |
-
# Keep only last 10 searches
|
114 |
-
if len(st.session_state.search_history) > 10:
|
115 |
-
st.session_state.search_history.pop()
|
116 |
-
|
117 |
-
def save_feedback(repo_id, feedback_type):
|
118 |
-
"""Save user feedback"""
|
119 |
-
if repo_id not in st.session_state.feedback_data:
|
120 |
-
st.session_state.feedback_data[repo_id] = {'likes': 0, 'dislikes': 0}
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
else:
|
125 |
-
st.session_state.feedback_data[repo_id]['dislikes'] += 1
|
126 |
|
127 |
-
|
128 |
-
"""Get repository recommendations"""
|
129 |
-
query_embedding = model_manager.generate_embedding(query)
|
130 |
-
similarities = data['embedding'].apply(
|
131 |
-
lambda x: cosine_similarity([query_embedding], [x])[0][0]
|
132 |
-
)
|
133 |
-
recommendations = data.assign(similarity=similarities)\
|
134 |
-
.sort_values(by='similarity', ascending=False)\
|
135 |
-
.head(top_n)
|
136 |
-
return recommendations
|
137 |
-
|
138 |
-
# Streamlit UI
|
139 |
-
def main():
|
140 |
-
st.title("Repository Recommender System 🚀")
|
141 |
-
|
142 |
-
# Sidebar with history
|
143 |
-
with st.sidebar:
|
144 |
-
st.header("Search History 📜")
|
145 |
-
if st.session_state.search_history:
|
146 |
-
for entry in st.session_state.search_history:
|
147 |
-
with st.expander(f"🔍 {entry['timestamp']}", expanded=False):
|
148 |
-
st.write(f"Query: {entry['query']}")
|
149 |
-
for rec in entry['recommendations'][:3]: # Show top 3
|
150 |
-
st.write(f"- {rec['repo']} ({rec['similarity']:.2%})")
|
151 |
-
else:
|
152 |
-
st.info("No search history yet")
|
153 |
-
|
154 |
-
# Main interface
|
155 |
-
st.markdown("""
|
156 |
-
**Welcome to the Enhanced Repo_Recommender!**
|
157 |
-
|
158 |
-
Enter your project description to get personalized repository recommendations.
|
159 |
-
New features:
|
160 |
-
- 📜 Search history (check sidebar)
|
161 |
-
- 👍 Repository feedback
|
162 |
-
- ⚡ Optimized performance
|
163 |
-
""")
|
164 |
-
|
165 |
-
# Initialize managers
|
166 |
-
model_manager = ModelManager()
|
167 |
-
data = DataManager.load_dataset()
|
168 |
-
|
169 |
-
# Compute embeddings if not already done
|
170 |
-
if 'embedding' not in data.columns:
|
171 |
-
data['embedding'] = DataManager.compute_embeddings(data, model_manager)
|
172 |
-
|
173 |
-
# User input
|
174 |
-
user_query = st.text_area(
|
175 |
-
"Describe your project:",
|
176 |
-
height=150,
|
177 |
-
placeholder="Example: I need a machine learning project for customer churn prediction..."
|
178 |
-
)
|
179 |
-
|
180 |
-
# Get recommendations
|
181 |
-
if st.button("Get Recommendations", type="primary"):
|
182 |
-
if user_query.strip():
|
183 |
-
with st.spinner("Finding relevant repositories..."):
|
184 |
-
recommendations = get_recommendations(user_query, data, model_manager)
|
185 |
-
add_to_history(user_query, recommendations)
|
186 |
-
|
187 |
-
# Display recommendations
|
188 |
-
st.markdown("### 🎯 Top Recommendations")
|
189 |
-
for idx, row in recommendations.iterrows():
|
190 |
-
with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
|
191 |
-
cols = st.columns([2, 1])
|
192 |
-
with cols[0]:
|
193 |
-
st.markdown(f"**Path:** `{row['path']}`")
|
194 |
-
st.markdown(f"**Summary:** {row['summary']}")
|
195 |
-
st.markdown(f"**URL:** [View Repository]({row['url']})")
|
196 |
-
with cols[1]:
|
197 |
-
st.metric("Similarity", f"{row['similarity']:.2%}")
|
198 |
-
|
199 |
-
# Feedback buttons
|
200 |
-
feedback_cols = st.columns(2)
|
201 |
-
repo_id = f"{row['repo']}_{row['path']}"
|
202 |
-
|
203 |
-
with feedback_cols[0]:
|
204 |
-
if st.button("👍", key=f"like_{repo_id}"):
|
205 |
-
save_feedback(repo_id, 'like')
|
206 |
-
st.success("Thanks for your feedback!")
|
207 |
-
|
208 |
-
with feedback_cols[1]:
|
209 |
-
if st.button("👎", key=f"dislike_{repo_id}"):
|
210 |
-
save_feedback(repo_id, 'dislike')
|
211 |
-
st.success("Thanks for your feedback!")
|
212 |
-
|
213 |
-
# Show feedback stats
|
214 |
-
if repo_id in st.session_state.feedback_data:
|
215 |
-
stats = st.session_state.feedback_data[repo_id]
|
216 |
-
st.write(f"Likes: {stats['likes']} | Dislikes: {stats['dislikes']}")
|
217 |
-
|
218 |
-
if row['docstring']:
|
219 |
-
with st.expander("View Documentation"):
|
220 |
-
st.markdown(row['docstring'])
|
221 |
-
else:
|
222 |
-
st.warning("Please enter a project description.")
|
223 |
-
|
224 |
-
# Footer
|
225 |
-
st.markdown("---")
|
226 |
-
st.markdown("Made with 🤖 using CodeT5 and Streamlit")
|
227 |
-
|
228 |
-
if __name__ == "__main__":
|
229 |
-
main()
|
230 |
-
|
231 |
-
import warnings
|
232 |
-
warnings.filterwarnings('ignore')
|
233 |
-
|
234 |
-
import streamlit as st
|
235 |
-
import pandas as pd
|
236 |
-
import numpy as np
|
237 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
238 |
-
from transformers import AutoTokenizer, AutoModel
|
239 |
-
import torch
|
240 |
-
import gdown
|
241 |
-
from pathlib import Path
|
242 |
-
from datetime import datetime
|
243 |
-
|
244 |
-
# Initialize session state
|
245 |
-
if 'search_history' not in st.session_state:
|
246 |
-
st.session_state.search_history = []
|
247 |
-
if 'feedback_data' not in st.session_state:
|
248 |
-
st.session_state.feedback_data = {}
|
249 |
-
|
250 |
-
# Model Loading Optimization
|
251 |
@st.cache_resource
|
252 |
-
def
|
253 |
-
"""Optimized model loading with device placement"""
|
254 |
model_name = "Salesforce/codet5-small"
|
255 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
256 |
-
|
257 |
-
|
258 |
-
model.eval() # Set model to evaluation mode
|
259 |
-
return tokenizer, model, device
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
""
|
264 |
-
|
265 |
-
dataset_path = "/content/drive/MyDrive/practice_ml/filtered_dataset.csv"
|
266 |
-
|
267 |
-
if not Path(dataset_path).exists():
|
268 |
-
with st.spinner('Downloading dataset... This might take a few minutes...'):
|
269 |
-
url = "https://drive.google.com/file/d/1pPYlUEtIA3bi8iLVKqzF-37sHoaOhTZz/view?usp=sharing"
|
270 |
-
gdown.download(url, dataset_path, quiet=False)
|
271 |
-
|
272 |
-
data = pd.read_csv(dataset_path)
|
273 |
-
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
|
274 |
-
return data
|
275 |
-
|
276 |
-
@st.cache_data
|
277 |
-
def generate_embedding(_tokenizer, _model, _device, text, max_length=512):
|
278 |
-
"""Generate embedding for a single text"""
|
279 |
with torch.no_grad():
|
280 |
-
|
281 |
-
|
282 |
-
return_tensors="pt",
|
283 |
-
padding=True,
|
284 |
-
truncation=True,
|
285 |
-
max_length=max_length
|
286 |
-
).to(_device)
|
287 |
-
|
288 |
-
outputs = _model.encoder(**inputs)
|
289 |
-
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
290 |
-
return embedding
|
291 |
|
|
|
292 |
@st.cache_data
|
293 |
-
def
|
294 |
-
""
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
for text in batch
|
306 |
-
]
|
307 |
-
embeddings.extend(batch_embeddings)
|
308 |
-
progress_container.progress(min((i + batch_size) / len(texts), 1.0))
|
309 |
-
|
310 |
-
return embeddings
|
311 |
-
|
312 |
-
def add_to_history(query, recommendations):
|
313 |
-
"""Add search to history"""
|
314 |
-
history_entry = {
|
315 |
-
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
|
316 |
-
'query': query,
|
317 |
-
'recommendations': recommendations[['repo', 'path', 'url', 'similarity']].to_dict('records')
|
318 |
-
}
|
319 |
-
st.session_state.search_history.insert(0, history_entry)
|
320 |
-
if len(st.session_state.search_history) > 10:
|
321 |
-
st.session_state.search_history.pop()
|
322 |
-
|
323 |
-
def save_feedback(repo_id, feedback_type):
|
324 |
-
"""Save user feedback"""
|
325 |
-
if repo_id not in st.session_state.feedback_data:
|
326 |
-
st.session_state.feedback_data[repo_id] = {'likes': 0, 'dislikes': 0}
|
327 |
-
|
328 |
-
if feedback_type == 'like':
|
329 |
-
st.session_state.feedback_data[repo_id]['likes'] += 1
|
330 |
-
else:
|
331 |
-
st.session_state.feedback_data[repo_id]['dislikes'] += 1
|
332 |
-
|
333 |
-
def get_recommendations(query, data, tokenizer, model, device, top_n=5):
|
334 |
-
"""Get repository recommendations"""
|
335 |
-
query_embedding = generate_embedding(tokenizer, model, device, query)
|
336 |
-
|
337 |
-
similarities = []
|
338 |
-
for emb in data['embedding']:
|
339 |
-
sim = cosine_similarity([query_embedding], [emb])[0][0]
|
340 |
-
similarities.append(sim)
|
341 |
-
|
342 |
-
recommendations = data.assign(similarity=similarities)\
|
343 |
-
.sort_values(by='similarity', ascending=False)\
|
344 |
-
.head(top_n)
|
345 |
-
return recommendations
|
346 |
-
|
347 |
-
def main():
|
348 |
-
st.title("Repository Recommender System 🚀")
|
349 |
-
|
350 |
-
# Sidebar with history
|
351 |
-
with st.sidebar:
|
352 |
-
st.header("Search History 📜")
|
353 |
-
if st.session_state.search_history:
|
354 |
-
for entry in st.session_state.search_history:
|
355 |
-
with st.expander(f"🔍 {entry['timestamp']}", expanded=False):
|
356 |
-
st.write(f"Query: {entry['query']}")
|
357 |
-
for rec in entry['recommendations'][:3]:
|
358 |
-
st.write(f"- {rec['repo']} ({rec['similarity']:.2%})")
|
359 |
else:
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
**Welcome to the Enhanced Repo_Recommender!**
|
364 |
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
- ⚡ Optimized performance
|
370 |
-
""")
|
371 |
|
372 |
# Load resources
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
st.
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
with cols[1]:
|
407 |
-
st.metric("Similarity", f"{row['similarity']:.2%}")
|
408 |
-
|
409 |
-
# Feedback buttons
|
410 |
-
feedback_cols = st.columns(2)
|
411 |
-
repo_id = f"{row['repo']}_{row['path']}"
|
412 |
-
|
413 |
-
with feedback_cols[0]:
|
414 |
-
if st.button("👍", key=f"like_{repo_id}"):
|
415 |
-
save_feedback(repo_id, 'like')
|
416 |
-
st.success("Thanks for your feedback!")
|
417 |
-
|
418 |
-
with feedback_cols[1]:
|
419 |
-
if st.button("👎", key=f"dislike_{repo_id}"):
|
420 |
-
save_feedback(repo_id, 'dislike')
|
421 |
-
st.success("Thanks for your feedback!")
|
422 |
-
|
423 |
-
# Show feedback stats
|
424 |
-
if repo_id in st.session_state.feedback_data:
|
425 |
-
stats = st.session_state.feedback_data[repo_id]
|
426 |
-
st.write(f"Likes: {stats['likes']} | Dislikes: {stats['dislikes']}")
|
427 |
-
|
428 |
-
if row['docstring']:
|
429 |
-
with st.expander("View Documentation"):
|
430 |
-
st.markdown(row['docstring'])
|
431 |
-
else:
|
432 |
-
st.warning("Please enter a project description.")
|
433 |
-
|
434 |
-
# Footer
|
435 |
-
st.markdown("---")
|
436 |
-
st.markdown("Made with 🤖 using CodeT5 and Streamlit")
|
437 |
|
438 |
if __name__ == "__main__":
|
439 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
from transformers import AutoTokenizer, AutoModel
|
6 |
import torch
|
7 |
+
import requests
|
8 |
+
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Set page configuration
|
11 |
+
st.set_page_config(page_title="Repository Recommender", layout="wide")
|
|
|
|
|
12 |
|
13 |
+
# Load model and tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
@st.cache_resource
|
15 |
+
def load_model():
|
|
|
16 |
model_name = "Salesforce/codet5-small"
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
model = AutoModel.from_pretrained(model_name).to("cuda")
|
19 |
+
return tokenizer, model
|
|
|
|
|
20 |
|
21 |
+
def generate_embedding(text, tokenizer, model):
|
22 |
+
"""Generate embeddings for a given text."""
|
23 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
24 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
with torch.no_grad():
|
26 |
+
outputs = model.encoder(**inputs)
|
27 |
+
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Load dataset
|
30 |
@st.cache_data
|
31 |
+
def load_data():
|
32 |
+
dataset = load_dataset("frankjosh/filtered_dataset", split="train")
|
33 |
+
df = pd.DataFrame(dataset).head(500) # Limit to 500 repositories
|
34 |
+
return df
|
35 |
+
|
36 |
+
def fetch_readme(repo_url):
|
37 |
+
"""Fetch README file from GitHub repository."""
|
38 |
+
try:
|
39 |
+
readme_url = repo_url.rstrip("/") + "/blob/main/README.md"
|
40 |
+
response = requests.get(readme_url)
|
41 |
+
if response.status_code == 200:
|
42 |
+
return response.text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
else:
|
44 |
+
return "README not available."
|
45 |
+
except Exception as e:
|
46 |
+
return f"Error fetching README: {e}"
|
|
|
47 |
|
48 |
+
# Main application logic
|
49 |
+
def main():
|
50 |
+
st.title("Repository Recommender System")
|
51 |
+
st.write("Find Python repositories to learn production-level coding practices.")
|
|
|
|
|
52 |
|
53 |
# Load resources
|
54 |
+
tokenizer, model = load_model()
|
55 |
+
data = load_data()
|
56 |
+
|
57 |
+
# Input user query
|
58 |
+
user_query = st.text_input("Describe your project or learning goal:",
|
59 |
+
"I am working on a project to recommend music using pandas and numpy.")
|
60 |
+
if user_query:
|
61 |
+
query_embedding = generate_embedding(user_query, tokenizer, model)
|
62 |
+
|
63 |
+
# Compute similarity
|
64 |
+
data['similarity'] = data['embedding'].apply(
|
65 |
+
lambda emb: cosine_similarity([query_embedding], [np.array(emb)])[0][0]
|
66 |
+
)
|
67 |
+
|
68 |
+
# Filter and sort recommendations
|
69 |
+
top_recommendations = (
|
70 |
+
data.sort_values(by='similarity', ascending=False)
|
71 |
+
.head(5)
|
72 |
+
)
|
73 |
+
|
74 |
+
# Display recommendations
|
75 |
+
st.subheader("Top Recommendations")
|
76 |
+
for idx, row in top_recommendations.iterrows():
|
77 |
+
st.markdown(f"### {row['repo']}")
|
78 |
+
st.write(f"**Path:** {row['path']}")
|
79 |
+
st.write(f"**Summary:** {row['summary']}")
|
80 |
+
st.write(f"**Similarity Score:** {row['similarity']:.2f}")
|
81 |
+
st.markdown(f"[Repository Link]({row['url']})")
|
82 |
+
|
83 |
+
# Fetch and display README
|
84 |
+
st.subheader("Repository README")
|
85 |
+
readme_content = fetch_readme(row['url'])
|
86 |
+
st.code(readme_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
+
main()
|