Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -76,11 +76,39 @@ def predict_2(image):
|
|
76 |
patches_img.shape[2], patches_img.shape[3]])
|
77 |
|
78 |
unpatched_prediction = unpatchify(patched_prediction, (image.shape[0], image.shape[1]))
|
|
|
|
|
|
|
79 |
unpatched_prediction = targets_classes_colors[unpatched_prediction]
|
|
|
80 |
|
81 |
-
return
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
targets_classes_colors = np.array([[ 0, 0, 0],
|
85 |
[128, 64, 128],
|
86 |
[130, 76, 0],
|
@@ -162,7 +190,7 @@ with my_app:
|
|
162 |
img_source = gr.Image(label="Please select source Image")
|
163 |
source_image_loader = gr.Button("Load above Image")
|
164 |
with gr.Column():
|
165 |
-
output_label = gr.Label(label="Image
|
166 |
img_output = gr.Image(label="Image Output")
|
167 |
source_image_loader.click(
|
168 |
predict_2,
|
|
|
76 |
patches_img.shape[2], patches_img.shape[3]])
|
77 |
|
78 |
unpatched_prediction = unpatchify(patched_prediction, (image.shape[0], image.shape[1]))
|
79 |
+
labels = LABEL_NAMES
|
80 |
+
res = np.bincount(unpatched_prediction)/unpatched_prediction.shape[0]
|
81 |
+
out = dict(list(zip(labels, res)))
|
82 |
unpatched_prediction = targets_classes_colors[unpatched_prediction]
|
83 |
+
|
84 |
|
85 |
+
return out, unpatched_prediction
|
86 |
+
|
87 |
+
LABEL_NAMES = ["unlabeled",
|
88 |
+
"paved-area",
|
89 |
+
"dirt",
|
90 |
+
"grass",
|
91 |
+
"gravel",
|
92 |
+
"water",
|
93 |
+
"rocks",
|
94 |
+
"pool",
|
95 |
+
"vegetation",
|
96 |
+
"roof",
|
97 |
+
"wall",
|
98 |
+
"window",
|
99 |
+
"door",
|
100 |
+
"fence",
|
101 |
+
"fence-pole",
|
102 |
+
"person",
|
103 |
+
"dog",
|
104 |
+
"car",
|
105 |
+
"bicycle",
|
106 |
+
"tree",
|
107 |
+
"bald-tree",
|
108 |
+
"ar-marker",
|
109 |
+
"obstacle",
|
110 |
+
"conflicting",
|
111 |
+
]
|
112 |
targets_classes_colors = np.array([[ 0, 0, 0],
|
113 |
[128, 64, 128],
|
114 |
[130, 76, 0],
|
|
|
190 |
img_source = gr.Image(label="Please select source Image")
|
191 |
source_image_loader = gr.Button("Load above Image")
|
192 |
with gr.Column():
|
193 |
+
output_label = gr.Label(label="Predicted Masked Image")
|
194 |
img_output = gr.Image(label="Image Output")
|
195 |
source_image_loader.click(
|
196 |
predict_2,
|