# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from pathlib import Path import draccus from lerobot.common.robot_devices.robots.configs import RobotConfig from lerobot.configs import parser from lerobot.configs.policies import PreTrainedConfig @dataclass class ControlConfig(draccus.ChoiceRegistry): pass @ControlConfig.register_subclass("calibrate") @dataclass class CalibrateControlConfig(ControlConfig): # List of arms to calibrate (e.g. `--arms='["left_follower","right_follower"]' left_leader`) arms: list[str] | None = None @ControlConfig.register_subclass("teleoperate") @dataclass class TeleoperateControlConfig(ControlConfig): # Limit the maximum frames per second. By default, no limit. fps: int | None = None teleop_time_s: float | None = None # Display all cameras on screen display_data: bool = False @ControlConfig.register_subclass("record") @dataclass class RecordControlConfig(ControlConfig): # Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`). repo_id: str # A short but accurate description of the task performed during the recording (e.g. "Pick the Lego block and drop it in the box on the right.") single_task: str # Root directory where the dataset will be stored (e.g. 'dataset/path'). root: str | Path | None = None policy: PreTrainedConfig | None = None # Limit the frames per second. By default, uses the policy fps. fps: int | None = None # Number of seconds before starting data collection. It allows the robot devices to warmup and synchronize. warmup_time_s: int | float = 10 # Number of seconds for data recording for each episode. episode_time_s: int | float = 60 # Number of seconds for resetting the environment after each episode. reset_time_s: int | float = 60 # Number of episodes to record. num_episodes: int = 50 # Encode frames in the dataset into video video: bool = True # Upload dataset to Hugging Face hub. push_to_hub: bool = True # Upload on private repository on the Hugging Face hub. private: bool = False # Add tags to your dataset on the hub. tags: list[str] | None = None # Number of subprocesses handling the saving of frames as PNG. Set to 0 to use threads only; # set to ≥1 to use subprocesses, each using threads to write images. The best number of processes # and threads depends on your system. We recommend 4 threads per camera with 0 processes. # If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses. num_image_writer_processes: int = 0 # Number of threads writing the frames as png images on disk, per camera. # Too many threads might cause unstable teleoperation fps due to main thread being blocked. # Not enough threads might cause low camera fps. num_image_writer_threads_per_camera: int = 4 # Display all cameras on screen display_data: bool = False # Use vocal synthesis to read events. play_sounds: bool = True # Resume recording on an existing dataset. resume: bool = False def __post_init__(self): # HACK: We parse again the cli args here to get the pretrained path if there was one. policy_path = parser.get_path_arg("control.policy") if policy_path: cli_overrides = parser.get_cli_overrides("control.policy") self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides) self.policy.pretrained_path = policy_path @ControlConfig.register_subclass("replay") @dataclass class ReplayControlConfig(ControlConfig): # Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`). repo_id: str # Index of the episode to replay. episode: int # Root directory where the dataset will be stored (e.g. 'dataset/path'). root: str | Path | None = None # Limit the frames per second. By default, uses the dataset fps. fps: int | None = None # Use vocal synthesis to read events. play_sounds: bool = True @ControlConfig.register_subclass("remote_robot") @dataclass class RemoteRobotConfig(ControlConfig): log_interval: int = 100 # Display all cameras on screen display_data: bool = False # Rerun configuration for remote robot (https://ref.rerun.io/docs/python/0.22.1/common/initialization_functions/#rerun.connect_tcp) viewer_ip: str | None = None viewer_port: str | None = None @dataclass class ControlPipelineConfig: robot: RobotConfig control: ControlConfig @classmethod def __get_path_fields__(cls) -> list[str]: """This enables the parser to load config from the policy using `--policy.path=local/dir`""" return ["control.policy"]