# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 2.0 to 2.1. It will: - Generate per-episodes stats and writes them in `episodes_stats.jsonl` - Check consistency between these new stats and the old ones. - Remove the deprecated `stats.json`. - Update codebase_version in `info.json`. - Push this new version to the hub on the 'main' branch and tags it with "v2.1". Usage: ```bash python lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py \ --repo-id=aliberts/koch_tutorial ``` """ import argparse import logging from huggingface_hub import HfApi from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info from lerobot.common.datasets.v21.convert_stats import check_aggregate_stats, convert_stats V20 = "v2.0" V21 = "v2.1" class SuppressWarnings: def __enter__(self): self.previous_level = logging.getLogger().getEffectiveLevel() logging.getLogger().setLevel(logging.ERROR) def __exit__(self, exc_type, exc_val, exc_tb): logging.getLogger().setLevel(self.previous_level) def convert_dataset( repo_id: str, branch: str | None = None, num_workers: int = 4, ): with SuppressWarnings(): dataset = LeRobotDataset(repo_id, revision=V20, force_cache_sync=True) if (dataset.root / EPISODES_STATS_PATH).is_file(): (dataset.root / EPISODES_STATS_PATH).unlink() convert_stats(dataset, num_workers=num_workers) ref_stats = load_stats(dataset.root) check_aggregate_stats(dataset, ref_stats) dataset.meta.info["codebase_version"] = CODEBASE_VERSION write_info(dataset.meta.info, dataset.root) dataset.push_to_hub(branch=branch, tag_version=False, allow_patterns="meta/") # delete old stats.json file if (dataset.root / STATS_PATH).is_file: (dataset.root / STATS_PATH).unlink() hub_api = HfApi() if hub_api.file_exists( repo_id=dataset.repo_id, filename=STATS_PATH, revision=branch, repo_type="dataset" ): hub_api.delete_file( path_in_repo=STATS_PATH, repo_id=dataset.repo_id, revision=branch, repo_type="dataset" ) hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--repo-id", type=str, required=True, help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset " "(e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).", ) parser.add_argument( "--branch", type=str, default=None, help="Repo branch to push your dataset. Defaults to the main branch.", ) parser.add_argument( "--num-workers", type=int, default=4, help="Number of workers for parallelizing stats compute. Defaults to 4.", ) args = parser.parse_args() convert_dataset(**vars(args))