Spaces:
Running
Running
#!/usr/bin/env python | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any | |
from lerobot.common.utils.utils import format_big_number | |
class AverageMeter: | |
""" | |
Computes and stores the average and current value | |
Adapted from https://github.com/pytorch/examples/blob/main/imagenet/main.py | |
""" | |
def __init__(self, name: str, fmt: str = ":f"): | |
self.name = name | |
self.fmt = fmt | |
self.reset() | |
def reset(self) -> None: | |
self.val = 0.0 | |
self.avg = 0.0 | |
self.sum = 0.0 | |
self.count = 0.0 | |
def update(self, val: float, n: int = 1) -> None: | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def __str__(self): | |
fmtstr = "{name}:{avg" + self.fmt + "}" | |
return fmtstr.format(**self.__dict__) | |
class MetricsTracker: | |
""" | |
A helper class to track and log metrics over time. | |
Usage pattern: | |
```python | |
# initialize, potentially with non-zero initial step (e.g. if resuming run) | |
metrics = {"loss": AverageMeter("loss", ":.3f")} | |
train_metrics = MetricsTracker(cfg, dataset, metrics, initial_step=step) | |
# update metrics derived from step (samples, episodes, epochs) at each training step | |
train_metrics.step() | |
# update various metrics | |
loss = policy.forward(batch) | |
train_metrics.loss = loss | |
# display current metrics | |
logging.info(train_metrics) | |
# export for wandb | |
wandb.log(train_metrics.to_dict()) | |
# reset averages after logging | |
train_metrics.reset_averages() | |
``` | |
""" | |
__keys__ = [ | |
"_batch_size", | |
"_num_frames", | |
"_avg_samples_per_ep", | |
"metrics", | |
"steps", | |
"samples", | |
"episodes", | |
"epochs", | |
] | |
def __init__( | |
self, | |
batch_size: int, | |
num_frames: int, | |
num_episodes: int, | |
metrics: dict[str, AverageMeter], | |
initial_step: int = 0, | |
): | |
self.__dict__.update(dict.fromkeys(self.__keys__)) | |
self._batch_size = batch_size | |
self._num_frames = num_frames | |
self._avg_samples_per_ep = num_frames / num_episodes | |
self.metrics = metrics | |
self.steps = initial_step | |
# A sample is an (observation,action) pair, where observation and action | |
# can be on multiple timestamps. In a batch, we have `batch_size` number of samples. | |
self.samples = self.steps * self._batch_size | |
self.episodes = self.samples / self._avg_samples_per_ep | |
self.epochs = self.samples / self._num_frames | |
def __getattr__(self, name: str) -> int | dict[str, AverageMeter] | AverageMeter | Any: | |
if name in self.__dict__: | |
return self.__dict__[name] | |
elif name in self.metrics: | |
return self.metrics[name] | |
else: | |
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'") | |
def __setattr__(self, name: str, value: Any) -> None: | |
if name in self.__dict__: | |
super().__setattr__(name, value) | |
elif name in self.metrics: | |
self.metrics[name].update(value) | |
else: | |
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'") | |
def step(self) -> None: | |
""" | |
Updates metrics that depend on 'step' for one step. | |
""" | |
self.steps += 1 | |
self.samples += self._batch_size | |
self.episodes = self.samples / self._avg_samples_per_ep | |
self.epochs = self.samples / self._num_frames | |
def __str__(self) -> str: | |
display_list = [ | |
f"step:{format_big_number(self.steps)}", | |
# number of samples seen during training | |
f"smpl:{format_big_number(self.samples)}", | |
# number of episodes seen during training | |
f"ep:{format_big_number(self.episodes)}", | |
# number of time all unique samples are seen | |
f"epch:{self.epochs:.2f}", | |
*[str(m) for m in self.metrics.values()], | |
] | |
return " ".join(display_list) | |
def to_dict(self, use_avg: bool = True) -> dict[str, int | float]: | |
""" | |
Returns the current metric values (or averages if `use_avg=True`) as a dict. | |
""" | |
return { | |
"steps": self.steps, | |
"samples": self.samples, | |
"episodes": self.episodes, | |
"epochs": self.epochs, | |
**{k: m.avg if use_avg else m.val for k, m in self.metrics.items()}, | |
} | |
def reset_averages(self) -> None: | |
"""Resets average meters.""" | |
for m in self.metrics.values(): | |
m.reset() | |