Spaces:
Running
Running
#!/usr/bin/env python | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import time | |
from dataclasses import replace | |
import torch | |
from stretch_body.gamepad_teleop import GamePadTeleop | |
from stretch_body.robot import Robot as StretchAPI | |
from stretch_body.robot_params import RobotParams | |
from lerobot.common.robot_devices.robots.configs import StretchRobotConfig | |
class StretchRobot(StretchAPI): | |
"""Wrapper of stretch_body.robot.Robot""" | |
def __init__(self, config: StretchRobotConfig | None = None, **kwargs): | |
super().__init__() | |
if config is None: | |
self.config = StretchRobotConfig(**kwargs) | |
else: | |
# Overwrite config arguments using kwargs | |
self.config = replace(config, **kwargs) | |
self.robot_type = self.config.type | |
self.cameras = self.config.cameras | |
self.is_connected = False | |
self.teleop = None | |
self.logs = {} | |
# TODO(aliberts): test this | |
RobotParams.set_logging_level("WARNING") | |
RobotParams.set_logging_formatter("brief_console_formatter") | |
self.state_keys = None | |
self.action_keys = None | |
def connect(self) -> None: | |
self.is_connected = self.startup() | |
if not self.is_connected: | |
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'") | |
raise ConnectionError() | |
for name in self.cameras: | |
self.cameras[name].connect() | |
self.is_connected = self.is_connected and self.cameras[name].is_connected | |
if not self.is_connected: | |
print("Could not connect to the cameras, check that all cameras are plugged-in.") | |
raise ConnectionError() | |
self.run_calibration() | |
def run_calibration(self) -> None: | |
if not self.is_homed(): | |
self.home() | |
def teleop_step( | |
self, record_data=False | |
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]: | |
# TODO(aliberts): return ndarrays instead of torch.Tensors | |
if not self.is_connected: | |
raise ConnectionError() | |
if self.teleop is None: | |
self.teleop = GamePadTeleop(robot_instance=False) | |
self.teleop.startup(robot=self) | |
before_read_t = time.perf_counter() | |
state = self.get_state() | |
action = self.teleop.gamepad_controller.get_state() | |
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t | |
before_write_t = time.perf_counter() | |
self.teleop.do_motion(robot=self) | |
self.push_command() | |
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t | |
if self.state_keys is None: | |
self.state_keys = list(state) | |
if not record_data: | |
return | |
state = torch.as_tensor(list(state.values())) | |
action = torch.as_tensor(list(action.values())) | |
# Capture images from cameras | |
images = {} | |
for name in self.cameras: | |
before_camread_t = time.perf_counter() | |
images[name] = self.cameras[name].async_read() | |
images[name] = torch.from_numpy(images[name]) | |
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"] | |
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t | |
# Populate output dictionaries | |
obs_dict, action_dict = {}, {} | |
obs_dict["observation.state"] = state | |
action_dict["action"] = action | |
for name in self.cameras: | |
obs_dict[f"observation.images.{name}"] = images[name] | |
return obs_dict, action_dict | |
def get_state(self) -> dict: | |
status = self.get_status() | |
return { | |
"head_pan.pos": status["head"]["head_pan"]["pos"], | |
"head_tilt.pos": status["head"]["head_tilt"]["pos"], | |
"lift.pos": status["lift"]["pos"], | |
"arm.pos": status["arm"]["pos"], | |
"wrist_pitch.pos": status["end_of_arm"]["wrist_pitch"]["pos"], | |
"wrist_roll.pos": status["end_of_arm"]["wrist_roll"]["pos"], | |
"wrist_yaw.pos": status["end_of_arm"]["wrist_yaw"]["pos"], | |
"gripper.pos": status["end_of_arm"]["stretch_gripper"]["pos"], | |
"base_x.vel": status["base"]["x_vel"], | |
"base_y.vel": status["base"]["y_vel"], | |
"base_theta.vel": status["base"]["theta_vel"], | |
} | |
def capture_observation(self) -> dict: | |
# TODO(aliberts): return ndarrays instead of torch.Tensors | |
before_read_t = time.perf_counter() | |
state = self.get_state() | |
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t | |
if self.state_keys is None: | |
self.state_keys = list(state) | |
state = torch.as_tensor(list(state.values())) | |
# Capture images from cameras | |
images = {} | |
for name in self.cameras: | |
before_camread_t = time.perf_counter() | |
images[name] = self.cameras[name].async_read() | |
images[name] = torch.from_numpy(images[name]) | |
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"] | |
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t | |
# Populate output dictionaries | |
obs_dict = {} | |
obs_dict["observation.state"] = state | |
for name in self.cameras: | |
obs_dict[f"observation.images.{name}"] = images[name] | |
return obs_dict | |
def send_action(self, action: torch.Tensor) -> torch.Tensor: | |
# TODO(aliberts): return ndarrays instead of torch.Tensors | |
if not self.is_connected: | |
raise ConnectionError() | |
if self.teleop is None: | |
self.teleop = GamePadTeleop(robot_instance=False) | |
self.teleop.startup(robot=self) | |
if self.action_keys is None: | |
dummy_action = self.teleop.gamepad_controller.get_state() | |
self.action_keys = list(dummy_action.keys()) | |
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True)) | |
before_write_t = time.perf_counter() | |
self.teleop.do_motion(state=action_dict, robot=self) | |
self.push_command() | |
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t | |
# TODO(aliberts): return action_sent when motion is limited | |
return action | |
def print_logs(self) -> None: | |
pass | |
# TODO(aliberts): move robot-specific logs logic here | |
def teleop_safety_stop(self) -> None: | |
if self.teleop is not None: | |
self.teleop._safety_stop(robot=self) | |
def disconnect(self) -> None: | |
self.stop() | |
if self.teleop is not None: | |
self.teleop.gamepad_controller.stop() | |
self.teleop.stop() | |
if len(self.cameras) > 0: | |
for cam in self.cameras.values(): | |
cam.disconnect() | |
self.is_connected = False | |
def __del__(self): | |
self.disconnect() | |