Spaces:
Running
Running
#!/usr/bin/env python | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import gymnasium as gym | |
from lerobot.common.envs.configs import AlohaEnv, EnvConfig, PushtEnv, XarmEnv | |
def make_env_config(env_type: str, **kwargs) -> EnvConfig: | |
if env_type == "aloha": | |
return AlohaEnv(**kwargs) | |
elif env_type == "pusht": | |
return PushtEnv(**kwargs) | |
elif env_type == "xarm": | |
return XarmEnv(**kwargs) | |
else: | |
raise ValueError(f"Policy type '{env_type}' is not available.") | |
def make_env(cfg: EnvConfig, n_envs: int = 1, use_async_envs: bool = False) -> gym.vector.VectorEnv | None: | |
"""Makes a gym vector environment according to the config. | |
Args: | |
cfg (EnvConfig): the config of the environment to instantiate. | |
n_envs (int, optional): The number of parallelized env to return. Defaults to 1. | |
use_async_envs (bool, optional): Whether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to | |
False. | |
Raises: | |
ValueError: if n_envs < 1 | |
ModuleNotFoundError: If the requested env package is not installed | |
Returns: | |
gym.vector.VectorEnv: The parallelized gym.env instance. | |
""" | |
if n_envs < 1: | |
raise ValueError("`n_envs must be at least 1") | |
package_name = f"gym_{cfg.type}" | |
try: | |
importlib.import_module(package_name) | |
except ModuleNotFoundError as e: | |
print(f"{package_name} is not installed. Please install it with `pip install 'lerobot[{cfg.type}]'`") | |
raise e | |
gym_handle = f"{package_name}/{cfg.task}" | |
# batched version of the env that returns an observation of shape (b, c) | |
env_cls = gym.vector.AsyncVectorEnv if use_async_envs else gym.vector.SyncVectorEnv | |
env = env_cls( | |
[lambda: gym.make(gym_handle, disable_env_checker=True, **cfg.gym_kwargs) for _ in range(n_envs)] | |
) | |
return env | |