Spaces:
Running
Running
File size: 10,752 Bytes
529ed6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from contextlib import nullcontext
from pprint import pformat
from typing import Any
import torch
from termcolor import colored
from torch.amp import GradScaler
from torch.optim import Optimizer
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.sampler import EpisodeAwareSampler
from lerobot.common.datasets.utils import cycle
from lerobot.common.envs.factory import make_env
from lerobot.common.optim.factory import make_optimizer_and_scheduler
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.utils import get_device_from_parameters
from lerobot.common.utils.logging_utils import AverageMeter, MetricsTracker
from lerobot.common.utils.random_utils import set_seed
from lerobot.common.utils.train_utils import (
get_step_checkpoint_dir,
get_step_identifier,
load_training_state,
save_checkpoint,
update_last_checkpoint,
)
from lerobot.common.utils.utils import (
format_big_number,
get_safe_torch_device,
has_method,
init_logging,
)
from lerobot.common.utils.wandb_utils import WandBLogger
from lerobot.configs import parser
from lerobot.configs.train import TrainPipelineConfig
from lerobot.scripts.eval import eval_policy
def update_policy(
train_metrics: MetricsTracker,
policy: PreTrainedPolicy,
batch: Any,
optimizer: Optimizer,
grad_clip_norm: float,
grad_scaler: GradScaler,
lr_scheduler=None,
use_amp: bool = False,
lock=None,
) -> tuple[MetricsTracker, dict]:
start_time = time.perf_counter()
device = get_device_from_parameters(policy)
policy.train()
with torch.autocast(device_type=device.type) if use_amp else nullcontext():
loss, output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
grad_scaler.scale(loss).backward()
# Unscale the gradient of the optimizer's assigned params in-place **prior to gradient clipping**.
grad_scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(
policy.parameters(),
grad_clip_norm,
error_if_nonfinite=False,
)
# Optimizer's gradients are already unscaled, so scaler.step does not unscale them,
# although it still skips optimizer.step() if the gradients contain infs or NaNs.
with lock if lock is not None else nullcontext():
grad_scaler.step(optimizer)
# Updates the scale for next iteration.
grad_scaler.update()
optimizer.zero_grad()
# Step through pytorch scheduler at every batch instead of epoch
if lr_scheduler is not None:
lr_scheduler.step()
if has_method(policy, "update"):
# To possibly update an internal buffer (for instance an Exponential Moving Average like in TDMPC).
policy.update()
train_metrics.loss = loss.item()
train_metrics.grad_norm = grad_norm.item()
train_metrics.lr = optimizer.param_groups[0]["lr"]
train_metrics.update_s = time.perf_counter() - start_time
return train_metrics, output_dict
@parser.wrap()
def train(cfg: TrainPipelineConfig):
cfg.validate()
logging.info(pformat(cfg.to_dict()))
if cfg.wandb.enable and cfg.wandb.project:
wandb_logger = WandBLogger(cfg)
else:
wandb_logger = None
logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
if cfg.seed is not None:
set_seed(cfg.seed)
# Check device is available
device = get_safe_torch_device(cfg.policy.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
logging.info("Creating dataset")
dataset = make_dataset(cfg)
# Create environment used for evaluating checkpoints during training on simulation data.
# On real-world data, no need to create an environment as evaluations are done outside train.py,
# using the eval.py instead, with gym_dora environment and dora-rs.
eval_env = None
if cfg.eval_freq > 0 and cfg.env is not None:
logging.info("Creating env")
eval_env = make_env(cfg.env, n_envs=cfg.eval.batch_size, use_async_envs=cfg.eval.use_async_envs)
logging.info("Creating policy")
policy = make_policy(
cfg=cfg.policy,
ds_meta=dataset.meta,
)
logging.info("Creating optimizer and scheduler")
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
grad_scaler = GradScaler(device.type, enabled=cfg.policy.use_amp)
step = 0 # number of policy updates (forward + backward + optim)
if cfg.resume:
step, optimizer, lr_scheduler = load_training_state(cfg.checkpoint_path, optimizer, lr_scheduler)
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {cfg.output_dir}")
if cfg.env is not None:
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.steps=} ({format_big_number(cfg.steps)})")
logging.info(f"{dataset.num_frames=} ({format_big_number(dataset.num_frames)})")
logging.info(f"{dataset.num_episodes=}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
# create dataloader for offline training
if hasattr(cfg.policy, "drop_n_last_frames"):
shuffle = False
sampler = EpisodeAwareSampler(
dataset.episode_data_index,
drop_n_last_frames=cfg.policy.drop_n_last_frames,
shuffle=True,
)
else:
shuffle = True
sampler = None
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=cfg.num_workers,
batch_size=cfg.batch_size,
shuffle=shuffle,
sampler=sampler,
pin_memory=device.type != "cpu",
drop_last=False,
)
dl_iter = cycle(dataloader)
policy.train()
train_metrics = {
"loss": AverageMeter("loss", ":.3f"),
"grad_norm": AverageMeter("grdn", ":.3f"),
"lr": AverageMeter("lr", ":0.1e"),
"update_s": AverageMeter("updt_s", ":.3f"),
"dataloading_s": AverageMeter("data_s", ":.3f"),
}
train_tracker = MetricsTracker(
cfg.batch_size, dataset.num_frames, dataset.num_episodes, train_metrics, initial_step=step
)
logging.info("Start offline training on a fixed dataset")
for _ in range(step, cfg.steps):
start_time = time.perf_counter()
batch = next(dl_iter)
train_tracker.dataloading_s = time.perf_counter() - start_time
for key in batch:
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].to(device, non_blocking=True)
train_tracker, output_dict = update_policy(
train_tracker,
policy,
batch,
optimizer,
cfg.optimizer.grad_clip_norm,
grad_scaler=grad_scaler,
lr_scheduler=lr_scheduler,
use_amp=cfg.policy.use_amp,
)
# Note: eval and checkpoint happens *after* the `step`th training update has completed, so we
# increment `step` here.
step += 1
train_tracker.step()
is_log_step = cfg.log_freq > 0 and step % cfg.log_freq == 0
is_saving_step = step % cfg.save_freq == 0 or step == cfg.steps
is_eval_step = cfg.eval_freq > 0 and step % cfg.eval_freq == 0
if is_log_step:
logging.info(train_tracker)
if wandb_logger:
wandb_log_dict = train_tracker.to_dict()
if output_dict:
wandb_log_dict.update(output_dict)
wandb_logger.log_dict(wandb_log_dict, step)
train_tracker.reset_averages()
if cfg.save_checkpoint and is_saving_step:
logging.info(f"Checkpoint policy after step {step}")
checkpoint_dir = get_step_checkpoint_dir(cfg.output_dir, cfg.steps, step)
save_checkpoint(checkpoint_dir, step, cfg, policy, optimizer, lr_scheduler)
update_last_checkpoint(checkpoint_dir)
if wandb_logger:
wandb_logger.log_policy(checkpoint_dir)
if cfg.env and is_eval_step:
step_id = get_step_identifier(step, cfg.steps)
logging.info(f"Eval policy at step {step}")
with (
torch.no_grad(),
torch.autocast(device_type=device.type) if cfg.policy.use_amp else nullcontext(),
):
eval_info = eval_policy(
eval_env,
policy,
cfg.eval.n_episodes,
videos_dir=cfg.output_dir / "eval" / f"videos_step_{step_id}",
max_episodes_rendered=4,
start_seed=cfg.seed,
)
eval_metrics = {
"avg_sum_reward": AverageMeter("∑rwrd", ":.3f"),
"pc_success": AverageMeter("success", ":.1f"),
"eval_s": AverageMeter("eval_s", ":.3f"),
}
eval_tracker = MetricsTracker(
cfg.batch_size, dataset.num_frames, dataset.num_episodes, eval_metrics, initial_step=step
)
eval_tracker.eval_s = eval_info["aggregated"].pop("eval_s")
eval_tracker.avg_sum_reward = eval_info["aggregated"].pop("avg_sum_reward")
eval_tracker.pc_success = eval_info["aggregated"].pop("pc_success")
logging.info(eval_tracker)
if wandb_logger:
wandb_log_dict = {**eval_tracker.to_dict(), **eval_info}
wandb_logger.log_dict(wandb_log_dict, step, mode="eval")
wandb_logger.log_video(eval_info["video_paths"][0], step, mode="eval")
if eval_env:
eval_env.close()
logging.info("End of training")
if __name__ == "__main__":
init_logging()
train()
|