File size: 7,255 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import os.path as osp
import platform
import subprocess
from copy import copy
from datetime import datetime, timezone
from pathlib import Path

import numpy as np
import torch


def none_or_int(value):
    if value == "None":
        return None
    return int(value)


def inside_slurm():
    """Check whether the python process was launched through slurm"""
    # TODO(rcadene): return False for interactive mode `--pty bash`
    return "SLURM_JOB_ID" in os.environ


def auto_select_torch_device() -> torch.device:
    """Tries to select automatically a torch device."""
    if torch.cuda.is_available():
        logging.info("Cuda backend detected, using cuda.")
        return torch.device("cuda")
    elif torch.backends.mps.is_available():
        logging.info("Metal backend detected, using cuda.")
        return torch.device("mps")
    else:
        logging.warning("No accelerated backend detected. Using default cpu, this will be slow.")
        return torch.device("cpu")


# TODO(Steven): Remove log. log shouldn't be an argument, this should be handled by the logger level
def get_safe_torch_device(try_device: str, log: bool = False) -> torch.device:
    """Given a string, return a torch.device with checks on whether the device is available."""
    try_device = str(try_device)
    match try_device:
        case "cuda":
            assert torch.cuda.is_available()
            device = torch.device("cuda")
        case "mps":
            assert torch.backends.mps.is_available()
            device = torch.device("mps")
        case "cpu":
            device = torch.device("cpu")
            if log:
                logging.warning("Using CPU, this will be slow.")
        case _:
            device = torch.device(try_device)
            if log:
                logging.warning(f"Using custom {try_device} device.")

    return device


def get_safe_dtype(dtype: torch.dtype, device: str | torch.device):
    """
    mps is currently not compatible with float64
    """
    if isinstance(device, torch.device):
        device = device.type
    if device == "mps" and dtype == torch.float64:
        return torch.float32
    else:
        return dtype


def is_torch_device_available(try_device: str) -> bool:
    try_device = str(try_device)  # Ensure try_device is a string
    if try_device == "cuda":
        return torch.cuda.is_available()
    elif try_device == "mps":
        return torch.backends.mps.is_available()
    elif try_device == "cpu":
        return True
    else:
        raise ValueError(f"Unknown device {try_device}. Supported devices are: cuda, mps or cpu.")


def is_amp_available(device: str):
    if device in ["cuda", "cpu"]:
        return True
    elif device == "mps":
        return False
    else:
        raise ValueError(f"Unknown device '{device}.")


def init_logging():
    def custom_format(record):
        dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        fnameline = f"{record.pathname}:{record.lineno}"
        message = f"{record.levelname} {dt} {fnameline[-15:]:>15} {record.msg}"
        return message

    logging.basicConfig(level=logging.INFO)

    for handler in logging.root.handlers[:]:
        logging.root.removeHandler(handler)

    formatter = logging.Formatter()
    formatter.format = custom_format
    console_handler = logging.StreamHandler()
    console_handler.setFormatter(formatter)
    logging.getLogger().addHandler(console_handler)


def format_big_number(num, precision=0):
    suffixes = ["", "K", "M", "B", "T", "Q"]
    divisor = 1000.0

    for suffix in suffixes:
        if abs(num) < divisor:
            return f"{num:.{precision}f}{suffix}"
        num /= divisor

    return num


def _relative_path_between(path1: Path, path2: Path) -> Path:
    """Returns path1 relative to path2."""
    path1 = path1.absolute()
    path2 = path2.absolute()
    try:
        return path1.relative_to(path2)
    except ValueError:  # most likely because path1 is not a subpath of path2
        common_parts = Path(osp.commonpath([path1, path2])).parts
        return Path(
            "/".join([".."] * (len(path2.parts) - len(common_parts)) + list(path1.parts[len(common_parts) :]))
        )


def print_cuda_memory_usage():
    """Use this function to locate and debug memory leak."""
    import gc

    gc.collect()
    # Also clear the cache if you want to fully release the memory
    torch.cuda.empty_cache()
    print("Current GPU Memory Allocated: {:.2f} MB".format(torch.cuda.memory_allocated(0) / 1024**2))
    print("Maximum GPU Memory Allocated: {:.2f} MB".format(torch.cuda.max_memory_allocated(0) / 1024**2))
    print("Current GPU Memory Reserved: {:.2f} MB".format(torch.cuda.memory_reserved(0) / 1024**2))
    print("Maximum GPU Memory Reserved: {:.2f} MB".format(torch.cuda.max_memory_reserved(0) / 1024**2))


def capture_timestamp_utc():
    return datetime.now(timezone.utc)


def say(text, blocking=False):
    system = platform.system()

    if system == "Darwin":
        cmd = ["say", text]

    elif system == "Linux":
        cmd = ["spd-say", text]
        if blocking:
            cmd.append("--wait")

    elif system == "Windows":
        cmd = [
            "PowerShell",
            "-Command",
            "Add-Type -AssemblyName System.Speech; "
            f"(New-Object System.Speech.Synthesis.SpeechSynthesizer).Speak('{text}')",
        ]

    else:
        raise RuntimeError("Unsupported operating system for text-to-speech.")

    if blocking:
        subprocess.run(cmd, check=True)
    else:
        subprocess.Popen(cmd, creationflags=subprocess.CREATE_NO_WINDOW if system == "Windows" else 0)


def log_say(text, play_sounds, blocking=False):
    logging.info(text)

    if play_sounds:
        say(text, blocking)


def get_channel_first_image_shape(image_shape: tuple) -> tuple:
    shape = copy(image_shape)
    if shape[2] < shape[0] and shape[2] < shape[1]:  # (h, w, c) -> (c, h, w)
        shape = (shape[2], shape[0], shape[1])
    elif not (shape[0] < shape[1] and shape[0] < shape[2]):
        raise ValueError(image_shape)

    return shape


def has_method(cls: object, method_name: str) -> bool:
    return hasattr(cls, method_name) and callable(getattr(cls, method_name))


def is_valid_numpy_dtype_string(dtype_str: str) -> bool:
    """
    Return True if a given string can be converted to a numpy dtype.
    """
    try:
        # Attempt to convert the string to a numpy dtype
        np.dtype(dtype_str)
        return True
    except TypeError:
        # If a TypeError is raised, the string is not a valid dtype
        return False