Spaces:
Running
Running
File size: 7,097 Bytes
529ed6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from contextlib import contextmanager
from pathlib import Path
from typing import Any, Generator
import numpy as np
import torch
from safetensors.torch import load_file, save_file
from lerobot.common.constants import RNG_STATE
from lerobot.common.datasets.utils import flatten_dict, unflatten_dict
def serialize_python_rng_state() -> dict[str, torch.Tensor]:
"""
Returns the rng state for `random` in the form of a flat dict[str, torch.Tensor] to be saved using
`safetensors.save_file()` or `torch.save()`.
"""
py_state = random.getstate()
return {
"py_rng_version": torch.tensor([py_state[0]], dtype=torch.int64),
"py_rng_state": torch.tensor(py_state[1], dtype=torch.int64),
}
def deserialize_python_rng_state(rng_state_dict: dict[str, torch.Tensor]) -> None:
"""
Restores the rng state for `random` from a dictionary produced by `serialize_python_rng_state()`.
"""
py_state = (rng_state_dict["py_rng_version"].item(), tuple(rng_state_dict["py_rng_state"].tolist()), None)
random.setstate(py_state)
def serialize_numpy_rng_state() -> dict[str, torch.Tensor]:
"""
Returns the rng state for `numpy` in the form of a flat dict[str, torch.Tensor] to be saved using
`safetensors.save_file()` or `torch.save()`.
"""
np_state = np.random.get_state()
# Ensure no breaking changes from numpy
assert np_state[0] == "MT19937"
return {
"np_rng_state_values": torch.tensor(np_state[1], dtype=torch.int64),
"np_rng_state_index": torch.tensor([np_state[2]], dtype=torch.int64),
"np_rng_has_gauss": torch.tensor([np_state[3]], dtype=torch.int64),
"np_rng_cached_gaussian": torch.tensor([np_state[4]], dtype=torch.float32),
}
def deserialize_numpy_rng_state(rng_state_dict: dict[str, torch.Tensor]) -> None:
"""
Restores the rng state for `numpy` from a dictionary produced by `serialize_numpy_rng_state()`.
"""
np_state = (
"MT19937",
rng_state_dict["np_rng_state_values"].numpy(),
rng_state_dict["np_rng_state_index"].item(),
rng_state_dict["np_rng_has_gauss"].item(),
rng_state_dict["np_rng_cached_gaussian"].item(),
)
np.random.set_state(np_state)
def serialize_torch_rng_state() -> dict[str, torch.Tensor]:
"""
Returns the rng state for `torch` in the form of a flat dict[str, torch.Tensor] to be saved using
`safetensors.save_file()` or `torch.save()`.
"""
torch_rng_state_dict = {"torch_rng_state": torch.get_rng_state()}
if torch.cuda.is_available():
torch_rng_state_dict["torch_cuda_rng_state"] = torch.cuda.get_rng_state()
return torch_rng_state_dict
def deserialize_torch_rng_state(rng_state_dict: dict[str, torch.Tensor]) -> None:
"""
Restores the rng state for `torch` from a dictionary produced by `serialize_torch_rng_state()`.
"""
torch.set_rng_state(rng_state_dict["torch_rng_state"])
if torch.cuda.is_available() and "torch_cuda_rng_state" in rng_state_dict:
torch.cuda.set_rng_state(rng_state_dict["torch_cuda_rng_state"])
def serialize_rng_state() -> dict[str, torch.Tensor]:
"""
Returns the rng state for `random`, `numpy`, and `torch`, in the form of a flat
dict[str, torch.Tensor] to be saved using `safetensors.save_file()` `torch.save()`.
"""
py_rng_state_dict = serialize_python_rng_state()
np_rng_state_dict = serialize_numpy_rng_state()
torch_rng_state_dict = serialize_torch_rng_state()
return {
**py_rng_state_dict,
**np_rng_state_dict,
**torch_rng_state_dict,
}
def deserialize_rng_state(rng_state_dict: dict[str, torch.Tensor]) -> None:
"""
Restores the rng state for `random`, `numpy`, and `torch` from a dictionary produced by
`serialize_rng_state()`.
"""
py_rng_state_dict = {k: v for k, v in rng_state_dict.items() if k.startswith("py")}
np_rng_state_dict = {k: v for k, v in rng_state_dict.items() if k.startswith("np")}
torch_rng_state_dict = {k: v for k, v in rng_state_dict.items() if k.startswith("torch")}
deserialize_python_rng_state(py_rng_state_dict)
deserialize_numpy_rng_state(np_rng_state_dict)
deserialize_torch_rng_state(torch_rng_state_dict)
def save_rng_state(save_dir: Path) -> None:
rng_state_dict = serialize_rng_state()
flat_rng_state_dict = flatten_dict(rng_state_dict)
save_file(flat_rng_state_dict, save_dir / RNG_STATE)
def load_rng_state(save_dir: Path) -> None:
flat_rng_state_dict = load_file(save_dir / RNG_STATE)
rng_state_dict = unflatten_dict(flat_rng_state_dict)
deserialize_rng_state(rng_state_dict)
def get_rng_state() -> dict[str, Any]:
"""Get the random state for `random`, `numpy`, and `torch`."""
random_state_dict = {
"random_state": random.getstate(),
"numpy_random_state": np.random.get_state(),
"torch_random_state": torch.random.get_rng_state(),
}
if torch.cuda.is_available():
random_state_dict["torch_cuda_random_state"] = torch.cuda.random.get_rng_state()
return random_state_dict
def set_rng_state(random_state_dict: dict[str, Any]):
"""Set the random state for `random`, `numpy`, and `torch`.
Args:
random_state_dict: A dictionary of the form returned by `get_rng_state`.
"""
random.setstate(random_state_dict["random_state"])
np.random.set_state(random_state_dict["numpy_random_state"])
torch.random.set_rng_state(random_state_dict["torch_random_state"])
if torch.cuda.is_available():
torch.cuda.random.set_rng_state(random_state_dict["torch_cuda_random_state"])
def set_seed(seed) -> None:
"""Set seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
@contextmanager
def seeded_context(seed: int) -> Generator[None, None, None]:
"""Set the seed when entering a context, and restore the prior random state at exit.
Example usage:
```
a = random.random() # produces some random number
with seeded_context(1337):
b = random.random() # produces some other random number
c = random.random() # produces yet another random number, but the same it would have if we never made `b`
```
"""
random_state_dict = get_rng_state()
set_seed(seed)
yield None
set_rng_state(random_state_dict)
|