File size: 20,913 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Logic to calibrate a robot arm built with feetech motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring

import time

import numpy as np

from lerobot.common.robot_devices.motors.feetech import (
    CalibrationMode,
    TorqueMode,
    convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus

URL_TEMPLATE = (
    "https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)

# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90


def assert_drive_mode(drive_mode):
    # `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
    if not np.all(np.isin(drive_mode, [0, 1])):
        raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")


def apply_drive_mode(position, drive_mode):
    assert_drive_mode(drive_mode)
    # Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
    # to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
    signed_drive_mode = -(drive_mode * 2 - 1)
    position *= signed_drive_mode
    return position


def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
    count = 0
    while True:
        present_pos = arm.read("Present_Position", motor_name)
        if positive_direction:
            # Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
            arm.write("Goal_Position", present_pos + 100, motor_name)
        else:
            arm.write("Goal_Position", present_pos - 100, motor_name)

        if while_move_hook is not None:
            while_move_hook()

        present_pos = arm.read("Present_Position", motor_name).item()
        present_speed = arm.read("Present_Speed", motor_name).item()
        present_current = arm.read("Present_Current", motor_name).item()
        # present_load = arm.read("Present_Load", motor_name).item()
        # present_voltage = arm.read("Present_Voltage", motor_name).item()
        # present_temperature = arm.read("Present_Temperature", motor_name).item()

        # print(f"{present_pos=}")
        # print(f"{present_speed=}")
        # print(f"{present_current=}")
        # print(f"{present_load=}")
        # print(f"{present_voltage=}")
        # print(f"{present_temperature=}")

        if present_speed == 0 and present_current > 40:
            count += 1
            if count > 100 or present_current > 300:
                return present_pos
        else:
            count = 0


def move_to_calibrate(
    arm,
    motor_name,
    invert_drive_mode=False,
    positive_first=True,
    in_between_move_hook=None,
    while_move_hook=None,
):
    initial_pos = arm.read("Present_Position", motor_name)

    if positive_first:
        p_present_pos = move_until_block(
            arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
        )
    else:
        n_present_pos = move_until_block(
            arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
        )

    if in_between_move_hook is not None:
        in_between_move_hook()

    if positive_first:
        n_present_pos = move_until_block(
            arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
        )
    else:
        p_present_pos = move_until_block(
            arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
        )

    zero_pos = (n_present_pos + p_present_pos) / 2

    calib_data = {
        "initial_pos": initial_pos,
        "homing_offset": zero_pos if invert_drive_mode else -zero_pos,
        "invert_drive_mode": invert_drive_mode,
        "drive_mode": -1 if invert_drive_mode else 0,
        "zero_pos": zero_pos,
        "start_pos": n_present_pos if invert_drive_mode else p_present_pos,
        "end_pos": p_present_pos if invert_drive_mode else n_present_pos,
    }
    return calib_data


def apply_offset(calib, offset):
    calib["zero_pos"] += offset
    if calib["drive_mode"]:
        calib["homing_offset"] += offset
    else:
        calib["homing_offset"] -= offset
    return calib


def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
    if robot_type == "so100":
        return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
    elif robot_type == "moss":
        return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
    else:
        raise ValueError(robot_type)


def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
    """All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
    if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
        raise ValueError("To run calibration, the torque must be disabled on all motors.")

    if not (robot_type == "so100" and arm_type == "follower"):
        raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")

    print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")

    print("\nMove arm to initial position")
    print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
    input("Press Enter to continue...")

    # Lower the acceleration of the motors (in [0,254])
    initial_acceleration = arm.read("Acceleration")
    arm.write("Lock", 0)
    arm.write("Acceleration", 10)
    time.sleep(1)

    arm.write("Torque_Enable", TorqueMode.ENABLED.value)

    print(f'{arm.read("Present_Position", "elbow_flex")=}')

    calib = {}

    init_wf_pos = arm.read("Present_Position", "wrist_flex")
    init_sl_pos = arm.read("Present_Position", "shoulder_lift")
    init_ef_pos = arm.read("Present_Position", "elbow_flex")
    arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
    arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
    arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
    time.sleep(2)

    print("Calibrate shoulder_pan")
    calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
    arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
    time.sleep(1)

    print("Calibrate gripper")
    calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
    time.sleep(1)

    print("Calibrate wrist_flex")
    calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
    calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)

    def in_between_move_hook():
        nonlocal arm, calib
        time.sleep(2)
        ef_pos = arm.read("Present_Position", "elbow_flex")
        sl_pos = arm.read("Present_Position", "shoulder_lift")
        arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
        arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
        time.sleep(2)

    print("Calibrate elbow_flex")
    calib["elbow_flex"] = move_to_calibrate(
        arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
    )
    calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)

    arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
    time.sleep(1)

    def in_between_move_hook():
        nonlocal arm, calib
        arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")

    print("Calibrate shoulder_lift")
    calib["shoulder_lift"] = move_to_calibrate(
        arm,
        "shoulder_lift",
        invert_drive_mode=True,
        positive_first=False,
        in_between_move_hook=in_between_move_hook,
    )
    # add an 30 steps as offset to align with body
    calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)

    def while_move_hook():
        nonlocal arm, calib
        positions = {
            "shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
            "elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
            "wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
            "gripper": round(calib["gripper"]["end_pos"]),
        }
        arm.write("Goal_Position", list(positions.values()), list(positions.keys()))

    arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
    time.sleep(2)
    arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
    time.sleep(2)
    arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
    time.sleep(2)
    arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
    time.sleep(2)

    print("Calibrate wrist_roll")
    calib["wrist_roll"] = move_to_calibrate(
        arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
    )

    arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
    time.sleep(1)
    arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
    time.sleep(1)
    arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
    time.sleep(1)
    arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
    arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
    time.sleep(1)
    arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
    time.sleep(1)

    calib_modes = []
    for name in arm.motor_names:
        if name == "gripper":
            calib_modes.append(CalibrationMode.LINEAR.name)
        else:
            calib_modes.append(CalibrationMode.DEGREE.name)

    calib_dict = {
        "homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
        "drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
        "start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
        "end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
        "calib_mode": calib_modes,
        "motor_names": arm.motor_names,
    }

    # Re-enable original accerlation
    arm.write("Lock", 0)
    arm.write("Acceleration", initial_acceleration)
    time.sleep(1)

    return calib_dict


def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
    """All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
    if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
        raise ValueError("To run calibration, the torque must be disabled on all motors.")

    if not (robot_type == "moss" and arm_type == "follower"):
        raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")

    print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")

    print("\nMove arm to initial position")
    print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
    input("Press Enter to continue...")

    # Lower the acceleration of the motors (in [0,254])
    initial_acceleration = arm.read("Acceleration")
    arm.write("Lock", 0)
    arm.write("Acceleration", 10)
    time.sleep(1)

    arm.write("Torque_Enable", TorqueMode.ENABLED.value)

    sl_pos = arm.read("Present_Position", "shoulder_lift")
    arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
    ef_pos = arm.read("Present_Position", "elbow_flex")
    arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
    time.sleep(2)

    calib = {}

    print("Calibrate shoulder_pan")
    calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
    arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
    time.sleep(1)

    print("Calibrate gripper")
    calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
    time.sleep(1)

    print("Calibrate wrist_flex")
    calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
    calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)

    wr_pos = arm.read("Present_Position", "wrist_roll")
    arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
    time.sleep(1)
    arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
    time.sleep(1)
    arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
    time.sleep(1)
    arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
    time.sleep(1)

    print("Calibrate wrist_roll")
    calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
    calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)

    arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
    arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
    arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
    time.sleep(1)
    arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
    arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")

    def in_between_move_elbow_flex_hook():
        nonlocal arm, calib
        arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")

    print("Calibrate elbow_flex")
    calib["elbow_flex"] = move_to_calibrate(
        arm,
        "elbow_flex",
        invert_drive_mode=True,
        in_between_move_hook=in_between_move_elbow_flex_hook,
    )
    arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")

    def in_between_move_shoulder_lift_hook():
        nonlocal arm, calib
        sl = arm.read("Present_Position", "shoulder_lift")
        arm.write("Goal_Position", sl - 1500, "shoulder_lift")
        time.sleep(1)
        arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
        time.sleep(1)
        arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
        time.sleep(1)

    print("Calibrate shoulder_lift")
    calib["shoulder_lift"] = move_to_calibrate(
        arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
    )
    calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)

    arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
    time.sleep(1)
    arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
    arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
    time.sleep(2)

    calib_modes = []
    for name in arm.motor_names:
        if name == "gripper":
            calib_modes.append(CalibrationMode.LINEAR.name)
        else:
            calib_modes.append(CalibrationMode.DEGREE.name)

    calib_dict = {
        "homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
        "drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
        "start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
        "end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
        "calib_mode": calib_modes,
        "motor_names": arm.motor_names,
    }

    # Re-enable original accerlation
    arm.write("Lock", 0)
    arm.write("Acceleration", initial_acceleration)
    time.sleep(1)

    return calib_dict


def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
    """This function ensures that a neural network trained on data collected on a given robot
    can work on another robot. For instance before calibration, setting a same goal position
    for each motor of two different robots will get two very different positions. But after calibration,
    the two robots will move to the same position.To this end, this function computes the homing offset
    and the drive mode for each motor of a given robot.

    Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
    to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
    being 0. During the calibration process, you will need to manually move the robot to this "zero position".

    Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
    in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
    to the "rotated position".

    After calibration, the homing offsets and drive modes are stored in a cache.

    Example of usage:
    ```python
    run_arm_calibration(arm, "so100", "left", "follower")
    ```
    """
    if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
        raise ValueError("To run calibration, the torque must be disabled on all motors.")

    print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")

    print("\nMove arm to zero position")
    print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
    input("Press Enter to continue...")

    # We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
    # It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
    # correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
    zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)

    # Compute homing offset so that `present_position + homing_offset ~= target_position`.
    zero_pos = arm.read("Present_Position")
    homing_offset = zero_target_pos - zero_pos

    # The rotated target position corresponds to a rotation of a quarter turn from the zero position.
    # This allows to identify the rotation direction of each motor.
    # For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
    # is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
    # Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
    # corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
    # of the previous motor in the kinetic chain.
    print("\nMove arm to rotated target position")
    print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
    input("Press Enter to continue...")

    rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)

    # Find drive mode by rotating each motor by a quarter of a turn.
    # Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
    rotated_pos = arm.read("Present_Position")
    drive_mode = (rotated_pos < zero_pos).astype(np.int32)

    # Re-compute homing offset to take into account drive mode
    rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
    homing_offset = rotated_target_pos - rotated_drived_pos

    print("\nMove arm to rest position")
    print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
    input("Press Enter to continue...")
    print()

    # Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
    calib_modes = []
    for name in arm.motor_names:
        if name == "gripper":
            calib_modes.append(CalibrationMode.LINEAR.name)
        else:
            calib_modes.append(CalibrationMode.DEGREE.name)

    calib_dict = {
        "homing_offset": homing_offset.tolist(),
        "drive_mode": drive_mode.tolist(),
        "start_pos": zero_pos.tolist(),
        "end_pos": rotated_pos.tolist(),
        "calib_mode": calib_modes,
        "motor_names": arm.motor_names,
    }
    return calib_dict