Spaces:
Running
Running
File size: 29,692 Bytes
529ed6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import importlib.resources
import json
import logging
from collections.abc import Iterator
from itertools import accumulate
from pathlib import Path
from pprint import pformat
from types import SimpleNamespace
from typing import Any
import datasets
import jsonlines
import numpy as np
import packaging.version
import torch
from datasets.table import embed_table_storage
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from huggingface_hub.errors import RevisionNotFoundError
from PIL import Image as PILImage
from torchvision import transforms
from lerobot.common.datasets.backward_compatibility import (
V21_MESSAGE,
BackwardCompatibilityError,
ForwardCompatibilityError,
)
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
INFO_PATH = "meta/info.json"
EPISODES_PATH = "meta/episodes.jsonl"
STATS_PATH = "meta/stats.json"
EPISODES_STATS_PATH = "meta/episodes_stats.jsonl"
TASKS_PATH = "meta/tasks.jsonl"
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
DEFAULT_PARQUET_PATH = "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet"
DEFAULT_IMAGE_PATH = "images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.png"
DATASET_CARD_TEMPLATE = """
---
# Metadata will go there
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## {}
"""
DEFAULT_FEATURES = {
"timestamp": {"dtype": "float32", "shape": (1,), "names": None},
"frame_index": {"dtype": "int64", "shape": (1,), "names": None},
"episode_index": {"dtype": "int64", "shape": (1,), "names": None},
"index": {"dtype": "int64", "shape": (1,), "names": None},
"task_index": {"dtype": "int64", "shape": (1,), "names": None},
}
def flatten_dict(d: dict, parent_key: str = "", sep: str = "/") -> dict:
"""Flatten a nested dictionary structure by collapsing nested keys into one key with a separator.
For example:
```
>>> dct = {"a": {"b": 1, "c": {"d": 2}}, "e": 3}`
>>> print(flatten_dict(dct))
{"a/b": 1, "a/c/d": 2, "e": 3}
"""
items = []
for k, v in d.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
def unflatten_dict(d: dict, sep: str = "/") -> dict:
outdict = {}
for key, value in d.items():
parts = key.split(sep)
d = outdict
for part in parts[:-1]:
if part not in d:
d[part] = {}
d = d[part]
d[parts[-1]] = value
return outdict
def get_nested_item(obj: DictLike, flattened_key: str, sep: str = "/") -> Any:
split_keys = flattened_key.split(sep)
getter = obj[split_keys[0]]
if len(split_keys) == 1:
return getter
for key in split_keys[1:]:
getter = getter[key]
return getter
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
serialized_dict = {}
for key, value in flatten_dict(stats).items():
if isinstance(value, (torch.Tensor, np.ndarray)):
serialized_dict[key] = value.tolist()
elif isinstance(value, np.generic):
serialized_dict[key] = value.item()
elif isinstance(value, (int, float)):
serialized_dict[key] = value
else:
raise NotImplementedError(f"The value '{value}' of type '{type(value)}' is not supported.")
return unflatten_dict(serialized_dict)
def embed_images(dataset: datasets.Dataset) -> datasets.Dataset:
# Embed image bytes into the table before saving to parquet
format = dataset.format
dataset = dataset.with_format("arrow")
dataset = dataset.map(embed_table_storage, batched=False)
dataset = dataset.with_format(**format)
return dataset
def load_json(fpath: Path) -> Any:
with open(fpath) as f:
return json.load(f)
def write_json(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with open(fpath, "w") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
def load_jsonlines(fpath: Path) -> list[Any]:
with jsonlines.open(fpath, "r") as reader:
return list(reader)
def write_jsonlines(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with jsonlines.open(fpath, "w") as writer:
writer.write_all(data)
def append_jsonlines(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with jsonlines.open(fpath, "a") as writer:
writer.write(data)
def write_info(info: dict, local_dir: Path):
write_json(info, local_dir / INFO_PATH)
def load_info(local_dir: Path) -> dict:
info = load_json(local_dir / INFO_PATH)
for ft in info["features"].values():
ft["shape"] = tuple(ft["shape"])
return info
def write_stats(stats: dict, local_dir: Path):
serialized_stats = serialize_dict(stats)
write_json(serialized_stats, local_dir / STATS_PATH)
def cast_stats_to_numpy(stats) -> dict[str, dict[str, np.ndarray]]:
stats = {key: np.array(value) for key, value in flatten_dict(stats).items()}
return unflatten_dict(stats)
def load_stats(local_dir: Path) -> dict[str, dict[str, np.ndarray]]:
if not (local_dir / STATS_PATH).exists():
return None
stats = load_json(local_dir / STATS_PATH)
return cast_stats_to_numpy(stats)
def write_task(task_index: int, task: dict, local_dir: Path):
task_dict = {
"task_index": task_index,
"task": task,
}
append_jsonlines(task_dict, local_dir / TASKS_PATH)
def load_tasks(local_dir: Path) -> tuple[dict, dict]:
tasks = load_jsonlines(local_dir / TASKS_PATH)
tasks = {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
task_to_task_index = {task: task_index for task_index, task in tasks.items()}
return tasks, task_to_task_index
def write_episode(episode: dict, local_dir: Path):
append_jsonlines(episode, local_dir / EPISODES_PATH)
def load_episodes(local_dir: Path) -> dict:
episodes = load_jsonlines(local_dir / EPISODES_PATH)
return {item["episode_index"]: item for item in sorted(episodes, key=lambda x: x["episode_index"])}
def write_episode_stats(episode_index: int, episode_stats: dict, local_dir: Path):
# We wrap episode_stats in a dictionary since `episode_stats["episode_index"]`
# is a dictionary of stats and not an integer.
episode_stats = {"episode_index": episode_index, "stats": serialize_dict(episode_stats)}
append_jsonlines(episode_stats, local_dir / EPISODES_STATS_PATH)
def load_episodes_stats(local_dir: Path) -> dict:
episodes_stats = load_jsonlines(local_dir / EPISODES_STATS_PATH)
return {
item["episode_index"]: cast_stats_to_numpy(item["stats"])
for item in sorted(episodes_stats, key=lambda x: x["episode_index"])
}
def backward_compatible_episodes_stats(
stats: dict[str, dict[str, np.ndarray]], episodes: list[int]
) -> dict[str, dict[str, np.ndarray]]:
return dict.fromkeys(episodes, stats)
def load_image_as_numpy(
fpath: str | Path, dtype: np.dtype = np.float32, channel_first: bool = True
) -> np.ndarray:
img = PILImage.open(fpath).convert("RGB")
img_array = np.array(img, dtype=dtype)
if channel_first: # (H, W, C) -> (C, H, W)
img_array = np.transpose(img_array, (2, 0, 1))
if np.issubdtype(dtype, np.floating):
img_array /= 255.0
return img_array
def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
to torch tensors. Importantly, images are converted from PIL, which corresponds to
a channel last representation (h w c) of uint8 type, to a torch image representation
with channel first (c h w) of float32 type in range [0,1].
"""
for key in items_dict:
first_item = items_dict[key][0]
if isinstance(first_item, PILImage.Image):
to_tensor = transforms.ToTensor()
items_dict[key] = [to_tensor(img) for img in items_dict[key]]
elif first_item is None:
pass
else:
items_dict[key] = [x if isinstance(x, str) else torch.tensor(x) for x in items_dict[key]]
return items_dict
def is_valid_version(version: str) -> bool:
try:
packaging.version.parse(version)
return True
except packaging.version.InvalidVersion:
return False
def check_version_compatibility(
repo_id: str,
version_to_check: str | packaging.version.Version,
current_version: str | packaging.version.Version,
enforce_breaking_major: bool = True,
) -> None:
v_check = (
packaging.version.parse(version_to_check)
if not isinstance(version_to_check, packaging.version.Version)
else version_to_check
)
v_current = (
packaging.version.parse(current_version)
if not isinstance(current_version, packaging.version.Version)
else current_version
)
if v_check.major < v_current.major and enforce_breaking_major:
raise BackwardCompatibilityError(repo_id, v_check)
elif v_check.minor < v_current.minor:
logging.warning(V21_MESSAGE.format(repo_id=repo_id, version=v_check))
def get_repo_versions(repo_id: str) -> list[packaging.version.Version]:
"""Returns available valid versions (branches and tags) on given repo."""
api = HfApi()
repo_refs = api.list_repo_refs(repo_id, repo_type="dataset")
repo_refs = [b.name for b in repo_refs.branches + repo_refs.tags]
repo_versions = []
for ref in repo_refs:
with contextlib.suppress(packaging.version.InvalidVersion):
repo_versions.append(packaging.version.parse(ref))
return repo_versions
def get_safe_version(repo_id: str, version: str | packaging.version.Version) -> str:
"""
Returns the version if available on repo or the latest compatible one.
Otherwise, will throw a `CompatibilityError`.
"""
target_version = (
packaging.version.parse(version) if not isinstance(version, packaging.version.Version) else version
)
hub_versions = get_repo_versions(repo_id)
if not hub_versions:
raise RevisionNotFoundError(
f"""Your dataset must be tagged with a codebase version.
Assuming _version_ is the codebase_version value in the info.json, you can run this:
```python
from huggingface_hub import HfApi
hub_api = HfApi()
hub_api.create_tag("{repo_id}", tag="_version_", repo_type="dataset")
```
"""
)
if target_version in hub_versions:
return f"v{target_version}"
compatibles = [
v for v in hub_versions if v.major == target_version.major and v.minor <= target_version.minor
]
if compatibles:
return_version = max(compatibles)
if return_version < target_version:
logging.warning(f"Revision {version} for {repo_id} not found, using version v{return_version}")
return f"v{return_version}"
lower_major = [v for v in hub_versions if v.major < target_version.major]
if lower_major:
raise BackwardCompatibilityError(repo_id, max(lower_major))
upper_versions = [v for v in hub_versions if v > target_version]
assert len(upper_versions) > 0
raise ForwardCompatibilityError(repo_id, min(upper_versions))
def get_hf_features_from_features(features: dict) -> datasets.Features:
hf_features = {}
for key, ft in features.items():
if ft["dtype"] == "video":
continue
elif ft["dtype"] == "image":
hf_features[key] = datasets.Image()
elif ft["shape"] == (1,):
hf_features[key] = datasets.Value(dtype=ft["dtype"])
elif len(ft["shape"]) == 1:
hf_features[key] = datasets.Sequence(
length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"])
)
elif len(ft["shape"]) == 2:
hf_features[key] = datasets.Array2D(shape=ft["shape"], dtype=ft["dtype"])
elif len(ft["shape"]) == 3:
hf_features[key] = datasets.Array3D(shape=ft["shape"], dtype=ft["dtype"])
elif len(ft["shape"]) == 4:
hf_features[key] = datasets.Array4D(shape=ft["shape"], dtype=ft["dtype"])
elif len(ft["shape"]) == 5:
hf_features[key] = datasets.Array5D(shape=ft["shape"], dtype=ft["dtype"])
else:
raise ValueError(f"Corresponding feature is not valid: {ft}")
return datasets.Features(hf_features)
def get_features_from_robot(robot: Robot, use_videos: bool = True) -> dict:
camera_ft = {}
if robot.cameras:
camera_ft = {
key: {"dtype": "video" if use_videos else "image", **ft}
for key, ft in robot.camera_features.items()
}
return {**robot.motor_features, **camera_ft, **DEFAULT_FEATURES}
def dataset_to_policy_features(features: dict[str, dict]) -> dict[str, PolicyFeature]:
# TODO(aliberts): Implement "type" in dataset features and simplify this
policy_features = {}
for key, ft in features.items():
shape = ft["shape"]
if ft["dtype"] in ["image", "video"]:
type = FeatureType.VISUAL
if len(shape) != 3:
raise ValueError(f"Number of dimensions of {key} != 3 (shape={shape})")
names = ft["names"]
# Backward compatibility for "channel" which is an error introduced in LeRobotDataset v2.0 for ported datasets.
if names[2] in ["channel", "channels"]: # (h, w, c) -> (c, h, w)
shape = (shape[2], shape[0], shape[1])
elif key == "observation.environment_state":
type = FeatureType.ENV
elif key.startswith("observation"):
type = FeatureType.STATE
elif key == "action":
type = FeatureType.ACTION
else:
continue
policy_features[key] = PolicyFeature(
type=type,
shape=shape,
)
return policy_features
def create_empty_dataset_info(
codebase_version: str,
fps: int,
robot_type: str,
features: dict,
use_videos: bool,
) -> dict:
return {
"codebase_version": codebase_version,
"robot_type": robot_type,
"total_episodes": 0,
"total_frames": 0,
"total_tasks": 0,
"total_videos": 0,
"total_chunks": 0,
"chunks_size": DEFAULT_CHUNK_SIZE,
"fps": fps,
"splits": {},
"data_path": DEFAULT_PARQUET_PATH,
"video_path": DEFAULT_VIDEO_PATH if use_videos else None,
"features": features,
}
def get_episode_data_index(
episode_dicts: dict[dict], episodes: list[int] | None = None
) -> dict[str, torch.Tensor]:
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in episode_dicts.items()}
if episodes is not None:
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
cumulative_lengths = list(accumulate(episode_lengths.values()))
return {
"from": torch.LongTensor([0] + cumulative_lengths[:-1]),
"to": torch.LongTensor(cumulative_lengths),
}
def check_timestamps_sync(
timestamps: np.ndarray,
episode_indices: np.ndarray,
episode_data_index: dict[str, np.ndarray],
fps: int,
tolerance_s: float,
raise_value_error: bool = True,
) -> bool:
"""
This check is to make sure that each timestamp is separated from the next by (1/fps) +/- tolerance
to account for possible numerical error.
Args:
timestamps (np.ndarray): Array of timestamps in seconds.
episode_indices (np.ndarray): Array indicating the episode index for each timestamp.
episode_data_index (dict[str, np.ndarray]): A dictionary that includes 'to',
which identifies indices for the end of each episode.
fps (int): Frames per second. Used to check the expected difference between consecutive timestamps.
tolerance_s (float): Allowed deviation from the expected (1/fps) difference.
raise_value_error (bool): Whether to raise a ValueError if the check fails.
Returns:
bool: True if all checked timestamp differences lie within tolerance, False otherwise.
Raises:
ValueError: If the check fails and `raise_value_error` is True.
"""
if timestamps.shape != episode_indices.shape:
raise ValueError(
"timestamps and episode_indices should have the same shape. "
f"Found {timestamps.shape=} and {episode_indices.shape=}."
)
# Consecutive differences
diffs = np.diff(timestamps)
within_tolerance = np.abs(diffs - (1.0 / fps)) <= tolerance_s
# Mask to ignore differences at the boundaries between episodes
mask = np.ones(len(diffs), dtype=bool)
ignored_diffs = episode_data_index["to"][:-1] - 1 # indices at the end of each episode
mask[ignored_diffs] = False
filtered_within_tolerance = within_tolerance[mask]
# Check if all remaining diffs are within tolerance
if not np.all(filtered_within_tolerance):
# Track original indices before masking
original_indices = np.arange(len(diffs))
filtered_indices = original_indices[mask]
outside_tolerance_filtered_indices = np.nonzero(~filtered_within_tolerance)[0]
outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices]
outside_tolerances = []
for idx in outside_tolerance_indices:
entry = {
"timestamps": [timestamps[idx], timestamps[idx + 1]],
"diff": diffs[idx],
"episode_index": episode_indices[idx].item()
if hasattr(episode_indices[idx], "item")
else episode_indices[idx],
}
outside_tolerances.append(entry)
if raise_value_error:
raise ValueError(
f"""One or several timestamps unexpectedly violate the tolerance inside episode range.
This might be due to synchronization issues during data collection.
\n{pformat(outside_tolerances)}"""
)
return False
return True
def check_delta_timestamps(
delta_timestamps: dict[str, list[float]], fps: int, tolerance_s: float, raise_value_error: bool = True
) -> bool:
"""This will check if all the values in delta_timestamps are multiples of 1/fps +/- tolerance.
This is to ensure that these delta_timestamps added to any timestamp from a dataset will themselves be
actual timestamps from the dataset.
"""
outside_tolerance = {}
for key, delta_ts in delta_timestamps.items():
within_tolerance = [abs(ts * fps - round(ts * fps)) / fps <= tolerance_s for ts in delta_ts]
if not all(within_tolerance):
outside_tolerance[key] = [
ts for ts, is_within in zip(delta_ts, within_tolerance, strict=True) if not is_within
]
if len(outside_tolerance) > 0:
if raise_value_error:
raise ValueError(
f"""
The following delta_timestamps are found outside of tolerance range.
Please make sure they are multiples of 1/{fps} +/- tolerance and adjust
their values accordingly.
\n{pformat(outside_tolerance)}
"""
)
return False
return True
def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dict[str, list[int]]:
delta_indices = {}
for key, delta_ts in delta_timestamps.items():
delta_indices[key] = [round(d * fps) for d in delta_ts]
return delta_indices
def cycle(iterable):
"""The equivalent of itertools.cycle, but safe for Pytorch dataloaders.
See https://github.com/pytorch/pytorch/issues/23900 for information on why itertools.cycle is not safe.
"""
iterator = iter(iterable)
while True:
try:
yield next(iterator)
except StopIteration:
iterator = iter(iterable)
def create_branch(repo_id, *, branch: str, repo_type: str | None = None) -> None:
"""Create a branch on a existing Hugging Face repo. Delete the branch if it already
exists before creating it.
"""
api = HfApi()
branches = api.list_repo_refs(repo_id, repo_type=repo_type).branches
refs = [branch.ref for branch in branches]
ref = f"refs/heads/{branch}"
if ref in refs:
api.delete_branch(repo_id, repo_type=repo_type, branch=branch)
api.create_branch(repo_id, repo_type=repo_type, branch=branch)
def create_lerobot_dataset_card(
tags: list | None = None,
dataset_info: dict | None = None,
**kwargs,
) -> DatasetCard:
"""
Keyword arguments will be used to replace values in ./lerobot/common/datasets/card_template.md.
Note: If specified, license must be one of https://huggingface.co/docs/hub/repositories-licenses.
"""
card_tags = ["LeRobot"]
if tags:
card_tags += tags
if dataset_info:
dataset_structure = "[meta/info.json](meta/info.json):\n"
dataset_structure += f"```json\n{json.dumps(dataset_info, indent=4)}\n```\n"
kwargs = {**kwargs, "dataset_structure": dataset_structure}
card_data = DatasetCardData(
license=kwargs.get("license"),
tags=card_tags,
task_categories=["robotics"],
configs=[
{
"config_name": "default",
"data_files": "data/*/*.parquet",
}
],
)
card_template = (importlib.resources.files("lerobot.common.datasets") / "card_template.md").read_text()
return DatasetCard.from_template(
card_data=card_data,
template_str=card_template,
**kwargs,
)
class IterableNamespace(SimpleNamespace):
"""
A namespace object that supports both dictionary-like iteration and dot notation access.
Automatically converts nested dictionaries into IterableNamespaces.
This class extends SimpleNamespace to provide:
- Dictionary-style iteration over keys
- Access to items via both dot notation (obj.key) and brackets (obj["key"])
- Dictionary-like methods: items(), keys(), values()
- Recursive conversion of nested dictionaries
Args:
dictionary: Optional dictionary to initialize the namespace
**kwargs: Additional keyword arguments passed to SimpleNamespace
Examples:
>>> data = {"name": "Alice", "details": {"age": 25}}
>>> ns = IterableNamespace(data)
>>> ns.name
'Alice'
>>> ns.details.age
25
>>> list(ns.keys())
['name', 'details']
>>> for key, value in ns.items():
... print(f"{key}: {value}")
name: Alice
details: IterableNamespace(age=25)
"""
def __init__(self, dictionary: dict[str, Any] = None, **kwargs):
super().__init__(**kwargs)
if dictionary is not None:
for key, value in dictionary.items():
if isinstance(value, dict):
setattr(self, key, IterableNamespace(value))
else:
setattr(self, key, value)
def __iter__(self) -> Iterator[str]:
return iter(vars(self))
def __getitem__(self, key: str) -> Any:
return vars(self)[key]
def items(self):
return vars(self).items()
def values(self):
return vars(self).values()
def keys(self):
return vars(self).keys()
def validate_frame(frame: dict, features: dict):
optional_features = {"timestamp"}
expected_features = (set(features) - set(DEFAULT_FEATURES.keys())) | {"task"}
actual_features = set(frame.keys())
error_message = validate_features_presence(actual_features, expected_features, optional_features)
if "task" in frame:
error_message += validate_feature_string("task", frame["task"])
common_features = actual_features & (expected_features | optional_features)
for name in common_features - {"task"}:
error_message += validate_feature_dtype_and_shape(name, features[name], frame[name])
if error_message:
raise ValueError(error_message)
def validate_features_presence(
actual_features: set[str], expected_features: set[str], optional_features: set[str]
):
error_message = ""
missing_features = expected_features - actual_features
extra_features = actual_features - (expected_features | optional_features)
if missing_features or extra_features:
error_message += "Feature mismatch in `frame` dictionary:\n"
if missing_features:
error_message += f"Missing features: {missing_features}\n"
if extra_features:
error_message += f"Extra features: {extra_features}\n"
return error_message
def validate_feature_dtype_and_shape(name: str, feature: dict, value: np.ndarray | PILImage.Image | str):
expected_dtype = feature["dtype"]
expected_shape = feature["shape"]
if is_valid_numpy_dtype_string(expected_dtype):
return validate_feature_numpy_array(name, expected_dtype, expected_shape, value)
elif expected_dtype in ["image", "video"]:
return validate_feature_image_or_video(name, expected_shape, value)
elif expected_dtype == "string":
return validate_feature_string(name, value)
else:
raise NotImplementedError(f"The feature dtype '{expected_dtype}' is not implemented yet.")
def validate_feature_numpy_array(
name: str, expected_dtype: str, expected_shape: list[int], value: np.ndarray
):
error_message = ""
if isinstance(value, np.ndarray):
actual_dtype = value.dtype
actual_shape = value.shape
if actual_dtype != np.dtype(expected_dtype):
error_message += f"The feature '{name}' of dtype '{actual_dtype}' is not of the expected dtype '{expected_dtype}'.\n"
if actual_shape != expected_shape:
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{expected_shape}'.\n"
else:
error_message += f"The feature '{name}' is not a 'np.ndarray'. Expected type is '{expected_dtype}', but type '{type(value)}' provided instead.\n"
return error_message
def validate_feature_image_or_video(name: str, expected_shape: list[str], value: np.ndarray | PILImage.Image):
# Note: The check of pixels range ([0,1] for float and [0,255] for uint8) is done by the image writer threads.
error_message = ""
if isinstance(value, np.ndarray):
actual_shape = value.shape
c, h, w = expected_shape
if len(actual_shape) != 3 or (actual_shape != (c, h, w) and actual_shape != (h, w, c)):
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{(c, h, w)}' or '{(h, w, c)}'.\n"
elif isinstance(value, PILImage.Image):
pass
else:
error_message += f"The feature '{name}' is expected to be of type 'PIL.Image' or 'np.ndarray' channel first or channel last, but type '{type(value)}' provided instead.\n"
return error_message
def validate_feature_string(name: str, value: str):
if not isinstance(value, str):
return f"The feature '{name}' is expected to be of type 'str', but type '{type(value)}' provided instead.\n"
return ""
def validate_episode_buffer(episode_buffer: dict, total_episodes: int, features: dict):
if "size" not in episode_buffer:
raise ValueError("size key not found in episode_buffer")
if "task" not in episode_buffer:
raise ValueError("task key not found in episode_buffer")
if episode_buffer["episode_index"] != total_episodes:
# TODO(aliberts): Add option to use existing episode_index
raise NotImplementedError(
"You might have manually provided the episode_buffer with an episode_index that doesn't "
"match the total number of episodes already in the dataset. This is not supported for now."
)
if episode_buffer["size"] == 0:
raise ValueError("You must add one or several frames with `add_frame` before calling `add_episode`.")
buffer_keys = set(episode_buffer.keys()) - {"task", "size"}
if not buffer_keys == set(features):
raise ValueError(
f"Features from `episode_buffer` don't match the ones in `features`."
f"In episode_buffer not in features: {buffer_keys - set(features)}"
f"In features not in episode_buffer: {set(features) - buffer_keys}"
)
|